KAT.TAL.322 Advanced Course in Labour Economics
March 13, 2024
Firm decisions about how much labour to hire.
Production function \(Y = F(L)\) where \(F^\prime > 0\) and \(F^{\prime\prime} < 0\)
\[ \max_{L} PF(L) - WL \]
FOC: \(F^\prime(L) = \frac{W}{P}\)
Downward-sloping labour demand \(\frac{\partial L}{\partial W} = \frac{1}{PF^{\prime\prime}(L)} < 0\)
Cost minimization problem
\(\min_{L, K} C(L, K) = WL + RK\) s.t. \(F(L, K) = \bar{Y}\)
Conditional demand functions \(\bar{K}(W, R, Y)\) and \(\bar{L}(W, R, Y)\)
\[ \frac{F_L(\bar{L}, \bar{K})}{F_K(\bar{L}, \bar{K})} = \frac{W}{R} \quad\text{and}\quad F(\bar{L}, \bar{K}) = \bar{Y} \]
Own-price elasticities: \(\eta_W^L = \frac{\partial \ln \bar{L}}{\partial \ln W} < 0\), \(\eta_R^K = \frac{\partial \ln \bar{K}}{\partial \ln R} < 0\)
Cross-price elasticities: \(\eta_R^L = \frac{\partial \ln \bar{L}}{\partial \ln R} > 0\) and \(\eta_W^K = \frac{\partial \ln \bar{K}}{\partial \ln W} > 0\)
Elasticity of substitution \(\sigma = \frac{\partial \ln\left(\frac{K}{L}\right)}{\partial \ln \left(\frac{W}{R}\right)} > 0\)
It is also possible to show that
\[ \eta_R^L = \sigma (1 - s) \quad \text{and} \quad \eta_W^L = -\sigma(1 - s) \]
where \(s = \frac{WL}{C}\) is labour share in total cost
\(\max_{Y} PY - C(W, R, Y)\)
Solution: \(P = C_Y(W, R, Y^*), L^* = \bar{L}(W, R, Y^*), K^* = \bar{K}(W, R, Y^*)\)
Total elasticities decomposed into substitution and scale effects:
\[ \varepsilon_W^L = \color{#8e2f1f}{\eta_W^L} + \color{#288393}{\eta_Y^L \varepsilon_W^Y} < 0 \]
\[ \varepsilon_R^L = \color{#8e2f1f}{\eta_R^L} + \color{#288393}{\eta_Y^L\varepsilon_R^Y} \lessgtr 0 \]
Shephard’s lemma: specify cost function and back out labour demand
Example: translog cost function with \(n\) inputs
\[ \ln C = a_0 + \sum_{i = 1}^n a_i \ln W^i + \frac{1}{2} \sum_{i = 1}^n \sum_{j = 1}^n a_{ij} \ln W^i \ln W^j + \frac{1}{\theta} \ln Y \]
\[ \Rightarrow s^i = a_i + \sum_{j = 1}^n a_{ij} \ln W^j \]
Estimate parameters \(a_{i}, a_{ij}\) and calculate implied elasticities.
Endogeneity
General equilibrium
Definitions of variables
Review by Hamermesh (1996) concludes that \(-\eta_W^L \in [0.15, 0.75]\).
If \(\eta_W^L = -0.30\) and given that \(s \approx 0.7\),
\[ \sigma = \frac{-\eta_W^L}{1 - s} \approx 1 \]
consistent with the Cobb-Douglas production function.
The review also suggests \(-\varepsilon_W^L \approx 1 \Rightarrow\) large scale effect.
Quadratic cost: \(C\left(\Delta L_t\right) = b\left(\Delta L_t - a\right)^2\)
Assymmetric convex costs: \(C\left(\Delta L_t\right) = -1 + e^{a\Delta L_t} - a\Delta L_t + \frac{b}{2}\left(\Delta L_t\right)^2\)
Linear cost: \(C\left(\Delta L_t\right) = \begin{cases}c_h \Delta L_t & \text{if }\Delta L_t \geq 0\\-c_f \Delta L_t & \text{if }\Delta L_t \leq 0\end{cases}\)
Fixed cost
Continuous time \(\Rightarrow \Delta L_t = \dot{L}_t = \frac{\text{d} L_t}{\text{d}t}\)
\[ \Pi_0 = \int_0^\infty \Pi_t dt = \int_0^\infty \left[F(L_t) - W_tL_t - \frac{b}{2}\dot{L}_t^2\right]e^{-rt}dt \]
Euler equation: \(\frac{\partial \Pi_t}{\partial L} = \frac{\text{d}}{\text{d}t}\left(\frac{\partial \Pi_t}{\partial \dot{L}_t}\right) \Rightarrow b\ddot{L}_t - rb\dot{L}_t + F'(L_t) - W_t = 0\)
Optimal path: \(\dot{L}_t = \gamma \left[L^* - L_t\right]\) where \(\gamma\) is decreasing in \(b\).
\[ \Pi_0 = \int_0^\infty \left[F(L_t) - W_tL_t - C(\dot{L}_t)\right]e^{-rt}dt \]
where \(C\left(\dot{L}_t\right) = \begin{cases}c_h \dot{L}_t & \text{if }\dot{L}_t \geq 0\\-c_f \dot{L}_t & \text{if }\dot{L}_t \leq 0\end{cases}\)
Optimal labour demand path is derived from
\[ \begin{cases}F'(L_t) = W_t + r c_h & \text{if }\dot{L}_t \geq 0 \\ F'(L_t) = W_t - r c_f & \text{if }\dot{L}_t < 0\end{cases} \]
Quadratic adjustment cost
Assume linear quadratic production function
Estimate \(L_{it} = \lambda L_{i, t - 1} + X_{it} \beta + \mu_i + \varepsilon_{it}\)
Other adjustment costs and production functions
Estimate Euler equation directly
Current employment \(L_t\) depends on past and future variables
Appropriate econometric methods (Hamilton 1994 book)
Adjustments happen fast (1-2 quarters) (Hamermesh 1996, chap. 7)
Dynamic substitutes: utilization of capital increases with \(L_t - L^*\)
Hours of work are adjusted faster than number of workers
What do the models we have considered so far predict?
lower labour demand (both compensated and uncompensated)
(maybe) higher labour supply
Any “problems” with these conclusions?
Typically not supported by empirical evidence!
Seattle \(\uparrow\) min wage from $9.47 up to
Causal design:
However,
same policy + synthetic control = no change in employment
Review in Clemens (2021)
Basic static and dynamic models of labour demand
Application to minimum wage policy
Next: Human Capital