9. Labour market discrimination

KAT.TAL.322 Advanced Course in Labour Economics

Nurfatima Jandarova

September 22, 2025

Same level of productivity, different outcomes based on nonproductive characteristics

  • Employers may discriminate in hiring/firing decisions

  • Co-workers may discriminate in collaboration activity

  • Customers may discriminate in purchase decisions

Taste discrimination

Taste discrimination

First formalized by Becker (1957)

  • There are two types of workers \(A\) and \(B\)
  • Perfect substitutes: \(F(A + B) \Rightarrow F_A = F_B\)

A firm decides how many workers to employ to maximise the utility

\[ \max_{A, B} PF(A + B) - w_A A - w_B B - d B \]

where \(d \geq 0\) is the disutility employer gets from worker \(B\)

Taste discrimination

FOCs:

\[\begin{align} PF_A(A + B) &= w_A \\ PF_B(A + B) &= w_B + d \end{align}\]

Hire \(B\) iff \(w_B + d \leq w_A\)

Taste discrimination

Perfect competition and free entry

Non-discriminating firms \(d = 0\) enters the market

Pay competitive wages to both groups \(w_A = w_B = P F_L(L)\)

Therefore,

  • discriminating firms hire \(A\) workers at \(w_A\)
  • non-discriminating firms hire everyone at \(w_A = w_B = w\)

Taste discrimination cannot persist under perfect competition

Taste discrimination

Imperfect competition

  1. Monopsonistic employer

    Lower wages and lower employment of discriminated group

  2. Market frictions (Black 1995)

    Job search costs:

    • Existence of employers with \(d>0\) lowers reservation wage
    • Wages of discriminated workers at non-discriminating firms are also lower
    • Longer unemployment until meet non-discriminating firm

Statistical discrimination

Statistical discrimination

Overview

Key feature: unobservable productivity

  • Suppose firms meets workers \(A_i\) and \(B_j\) such that \(F_{Ai} = F_{Bi}\)
  • Firm doesn’t see \(F_{Ai}\) or \(F_{Bi}\), only group identities \(A\) and \(B\)
  • If firms believe that \(\mathbb{E}(F_A) \geq \mathbb{E}(F_B)\), then \(\uparrow w_A\) and \(\uparrow L_A\)

Statistical discrimination

  • Two types of workers: high \(h^+ > 0\) and low \(h^- = 0\)

  • Employers know the overall share of efficient workers \(\pi(h^+) \equiv \pi\)

  • Employers use costless test to infer worker types and hire if passed

    • \(\Pr(\text{pass} | h^+) = 1\)
    • \(\Pr(\text{pass} | h^-) = p\) where \(p \in [0, 1]\)
  • Average productivity of workers passing the test (\(\equiv w\))

    \[ w \equiv \mathbb{E}\left(h | \text{pass}\right) = h^{+}\frac{\pi}{\pi + p\left(1 - \pi\right)} \]

Statistical discrimination

Self-fulfilling prophecies

Workers choose education to \(\max_{e\in\{0, 1\}} U(w, e) = \max_e w - e\)

If \(e = 1 \Rightarrow\) achieve productivity \(h^+\), otherwise, \(h^-\)

\[ \begin{align} w^{+} \equiv \mathbb{E}\left(h | \text{pass}\right) &= h^+ \frac{\pi}{\pi + p(1 - \pi)} \\ \mathbb{E}\left(w | e = 0\right) &= p w^{+} \end{align} \]

Optimal decision \(e = 1 \Leftrightarrow w^{+} - 1 \geq \mathbb{E}\left(w | e = 0 \right) \Rightarrow p \leq \pi\left[\left(h^{+} - 1\right)\left(1 - p\right)\right]\)

Statistical discrimination

Multliple equilibria and persistent inequalities

Source: Figure 5.7 (Cahuc 2004)

Systemic discrimination

Systemic discrimination (Bohren, Hull, and Imas 2025)

Discrimination in one area has spillover effects on other areas

Let’s consider two programmers: male (M) and female (F)

flowchart LR
  C["<span style='font-size:20px !important'>Programmers</span><br><i class='bi bi-person-standing' style='color:#107895'>  <i class='bi bi-person-standing-dress' style='color: #8e2f1f'></i>"]
  
  classDef default color: #000000, fill:transparent, stroke: transparent, padding: 0px !important, font-size: 34px
  linkStyle default stroke: #000000, stroke-width:2px;

Systemic discrimination (Bohren, Hull, and Imas 2025)

Discrimination in one area has spillover effects on other areas

They submit codes \(C_{0M} \equiv C_{0F}\) to open-source software

flowchart LR
  C["<span style='font-size:20px !important'>Programmers</span><br><i class='bi bi-person-standing' style='color:#107895'>  <i class='bi bi-person-standing-dress' style='color: #8e2f1f'></i>"]
  G["<span style='font-size:20px !important'>Open-source contributions</span><br><i class='bi bi-github' style='font-size: 28px'></i><br><i class='bi bi-person-standing' style='color: #107895'>  <i class='bi bi-person-standing-dress' style='color: #8e2f1f'></i><br><i class='bi bi-file-earmark-code' style='color:grey'></i>  <i class='bi bi-file-earmark-code' style='color:grey'></i>"]
  
  C --> G
  
  classDef default color: #000000, fill:transparent, stroke: transparent, padding: 0px !important, font-size: 34px
  linkStyle default stroke: #000000, stroke-width:2px;

Systemic discrimination (Bohren, Hull, and Imas 2025)

Discrimination in one area has spillover effects on other areas

They receive performance ratings \(\color{#107895}{P_M}\) and \(\color{#8e2f1f}{P_F}\)

flowchart LR
  C["<span style='font-size:20px !important'>Programmers</span><br><i class='bi bi-person-standing' style='color:#107895'>  <i class='bi bi-person-standing-dress' style='color: #8e2f1f'></i>"]
  G["<span style='font-size:20px !important'>Open-source contributions</span><br><i class='bi bi-github' style='font-size: 28px'></i><br><i class='bi bi-person-standing' style='color: #107895'>  <i class='bi bi-person-standing-dress' style='color: #8e2f1f'></i><br><i class='bi bi-file-earmark-code' style='color:grey'></i>  <i class='bi bi-file-earmark-code' style='color:grey'></i>"]
  E["<span style='font-size:20px !important'>Evaluations</span><br><i class='bi bi-thermometer-high' style='color: #107895'></i>  <i class='bi bi-thermometer-low' style='color: #8e2f1f'></i>"]
  
  C --> G --> E
  
  classDef default color: #000000, fill:transparent, stroke: transparent, padding: 0px !important, font-size: 34px
  linkStyle default stroke: #000000, stroke-width:2px;

Systemic discrimination (Bohren, Hull, and Imas 2025)

Discrimination in one area has spillover effects on other areas

Apply for jobs with signals \(\color{#107895}{S_M} = (\color{#107895}{P_M}, R_M)\) and \(\color{#8e2f1f}{S_F} = (\color{#8e2f1f}{P_F}, R_F)\)

flowchart LR
  C["<span style='font-size:20px !important'>Programmers</span><br><i class='bi bi-person-standing' style='color:#107895'>  <i class='bi bi-person-standing-dress' style='color: #8e2f1f'></i>"]
  G["<span style='font-size:20px !important'>Open-source contributions</span><br><i class='bi bi-github' style='font-size: 28px'></i><br><i class='bi bi-person-standing' style='color: #107895'>  <i class='bi bi-person-standing-dress' style='color: #8e2f1f'></i><br><i class='bi bi-file-earmark-code' style='color:grey'></i>  <i class='bi bi-file-earmark-code' style='color:grey'></i>"]
  E["<span style='font-size:20px !important'>Evaluations</span><br><i class='bi bi-thermometer-high' style='color: #107895'></i>  <i class='bi bi-thermometer-low' style='color: #8e2f1f'></i>"]
  J["<span style='font-size:20px !important'>Job application</span><br><i class='bi bi-buildings' style='font-size: 28px'></i><br><i class='bi bi-person-standing' style='color: #107895'>  <i class='bi bi-person-standing-dress' style='color: #8e2f1f'></i><br><i class='bi bi-file-earmark-person' style='color:grey'></i>  <i class='bi bi-file-earmark-person' style='color:grey'></i><br><i class='bi bi-thermometer-high' style='color: #107895'></i>  <i class='bi bi-thermometer-low' style='color: #8e2f1f'></i>"]
  
  C --> G --> E --> J
  C --> J
  
  classDef default color: #000000, fill:transparent, stroke: transparent, padding: 0px !important, font-size: 34px
  linkStyle default stroke: #000000, stroke-width:2px;

Systemic discrimination (Bohren, Hull, and Imas 2025)

Discrimination in one area has spillover effects on other areas

Employer’s hiring decision \(\color{#107895}{A_M(M, S_M)}\) and \(\color{#8e2f1f}{A_F(F, S_F)}\)

flowchart LR
  C["<span style='font-size:20px !important'>Programmers</span><br><i class='bi bi-person-standing' style='color:#107895'>  <i class='bi bi-person-standing-dress' style='color: #8e2f1f'></i>"]
  G["<span style='font-size:20px !important'>Open-source contributions</span><br><i class='bi bi-github' style='font-size: 28px'></i><br><i class='bi bi-person-standing' style='color: #107895'>  <i class='bi bi-person-standing-dress' style='color: #8e2f1f'></i><br><i class='bi bi-file-earmark-code' style='color:grey'></i>  <i class='bi bi-file-earmark-code' style='color:grey'></i>"]
  E["<span style='font-size:20px !important'>Evaluations</span><br><i class='bi bi-thermometer-high' style='color: #107895'></i>  <i class='bi bi-thermometer-low' style='color: #8e2f1f'></i>"]
  J["<span style='font-size:20px !important'>Job application</span><br><i class='bi bi-buildings' style='font-size: 28px'></i><br><i class='bi bi-person-standing' style='color: #107895'>  <i class='bi bi-person-standing-dress' style='color: #8e2f1f'></i><br><i class='bi bi-file-earmark-person' style='color:grey'></i>  <i class='bi bi-file-earmark-person' style='color:grey'></i><br><i class='bi bi-thermometer-high' style='color: #107895'></i>  <i class='bi bi-thermometer-low' style='color: #8e2f1f'></i>"]
  H["<span style='font-size:20px !important'>Hired?</span><br><i class='bi bi-check-circle' style='color:#107895'></i>  <i class='bi bi-x-circle' style='color:#8e2f1f'></i>"]
  
  C --> G --> E --> J --> H
  C --> J
  
  classDef default color: #000000, fill:transparent, stroke: transparent, padding: 0px !important, font-size: 34px
  linkStyle default stroke: #000000, stroke-width:2px;

Decomposition (Bohren, Hull, and Imas 2025)

Direct discrimination

For a given signal \(S\), \(\delta(S) \equiv A(M, S) - A(F, S) \neq 0\)

Total discrimination

Let \(G(A | C_0, i)\) be distribution over all possible actions given identity \(i\) and initial condition \(C_0\).

\[ \Delta^T(C_0) \equiv \mathbb{E}_G\left[A | C_0, M\right] - \mathbb{E}_G\left[A | C_0, F\right] \neq 0 \]

Systemic discrimination

Let \(\tilde{G}(A|C_0, i)\) be distribution over actions under original signal distribution but \(A(-i, S)\)

\[ \Delta^S(C_0, M) \equiv \mathbb{E}_G\left[A | C_0, M\right] - \mathbb{E}_\tilde{G}\left[A, C_0, F\right] \]

\[ \Delta^S(C_0, F) \equiv \mathbb{E}_\tilde{G}\left[A | C_0, M\right] - \mathbb{E}_G\left[A, C_0, F\right] \]

Decomposition

Let \(\Sigma(S | C_0, i)\) be distribution over all possible signals given identity \(i\) and initial condition \(C_0\)

\[ \Delta^T(C_0) = \mathbb{E}_\Sigma\left[\delta(S)|C_0, M\right] + \Delta^S(C_0, F) \]

\[ \Delta^T(C_0) = \mathbb{E}_\Sigma\left[\delta(S) | C_0, F\right] + \Delta^S(C_0, M) \]

Empirical results

Measuring discrimination

\(\Delta\) Wage by non-productive characteristics given same productivity.

Empirical challenges

  • What constitutes a productive vs non-productive characteristic?
  • Is \(\Delta\) wage attributable to discrimination alone or worker preferences?
  • Does the discrimination arise from tastes or unobserved information?

Types of studies

  • Observational
  • Audit and correspondence studies
  • Lab and field experiments
  • Quasi-random variation

Kitagawa-Oaxaca-Blinder1 decomposition

Wages in two groups (\(A\) and \(B\)) can be written

\[ \begin{align} \ln w_A &= \mathbf{x}_A \boldsymbol{\beta}_A + \varepsilon_A, \quad \mathbb{E}\left(\varepsilon_A\right) = 0 \\ \ln w_B &= \mathbf{x}_B \boldsymbol{\beta}_B + \varepsilon_B, \quad \mathbb{E}\left(\varepsilon_B\right) = 0 \\ \end{align} \]

Then, average wage differential

\[ \Delta \equiv \mathbb{E}\left(\ln w_A\right) - \mathbb{E}\left(\ln w_B\right) = \color{#288393}{\left[\mathbb{E}\left(\mathbf{x}_A\right) - \mathbb{E}\left(\mathbf{x}_B\right)\right]\boldsymbol{\beta}_A} + \color{#9a2515}{\mathbb{E}\left(\mathbf{x}_B\right)\left(\boldsymbol{\beta}_A - \boldsymbol{\beta}_B\right)} \]

decomposed into explained and unexplained components.

Kitagawa-Oaxaca-Blinder decomposition

Interpretation

  • Common support: \(\mathbf{x}_A\) and \(\mathbf{x}_B\) contain same set of variables with similar value
  • Conditional mean independence: \(\mathbb{E}(\varepsilon_A | \mathbf{x}_A) = \mathbb{E}(\varepsilon_B | \mathbf{x}_B) = 0\)
  • Invariance of conditional distributions: distribution of \(w_A | \mathbf{x}_A\) remains unchanged if \(B\) workers receive returns \(\boldsymbol{\beta}_A\)

These are very strict assumptions, so the decomposition is a correlational (not causal) measure.

Kitagawa-Oaxaca-Blinder decomposition

Source: Table 8.5 (Cahuc 2004)

Audit (correspondence) studies

  • Send fictitious CVs nearly identical except in group membership
  • Measure callback (interview invitations, offers) received
  • RCT \(\Rightarrow\) group differences can be interpreted as discrimination

Challenges

  • CVs may not convey all relevant productive characteristics
  • Cannot disentangle taste discrimination from statistical
  • Harder to generalize

Bertrand and Mullainathan (2004)

Created templates for CVs of jobseekers in Boston and Chicago

  • high and low quality types based on experience, skills, career profiles
  • randomly assign distinctively White or African-American name
  • track callback/email rates in race/sex/city/quality cell
White names African-American
College degree 0.720 0.720
(0.450) (0.450)
Years of experience 7.860 7.830
(5.070) (5.010)
Computer skills? 0.810 0.830
(0.390) (0.370)
Obs. 2 435 2 435

Source: Table 3 (Bertrand and Mullainathan 2004)

Bertrand and Mullainathan (2004)

Goldin and Rouse (2000)

Pre-1970s, musicians handpicked by the director

In 1970s-80s, auditions

  • “open and routinized”
  • blind (some stages)

Staggered adoption of screen: DiD method

Goldin and Rouse (2000)

Results

Preliminaries
Without semifinals With semifinals Semifinals Finals
Female x Blind 0.111 -0.025 -0.235 0.331
(0.067) (0.251) (0.133) (0.181)
Obs. 5 395 6 239 1 360 1 127
R2 0.775 0.697 0.794 0.878

Source: Table 6 (Goldin and Rouse 2000)

Mobius and Rosenblat (2006)

Lab experiment: taste discrimination based on beauty

Participants randomly assigned as workers (5) and employers (5).

  1. Workers answer survey and solve simplest maze game

    Survey + practice time = digital CV

  2. Confidence: predict # mazes solved in 15 min (private)

    \(100 A_j - 40 |C_j - A_j|\), where \(A_j\) actual and \(C_j\) predicted performance

Mobius and Rosenblat (2006)

  1. Workers randomly matched to employers (\(5\times5\))

    B CV only (baseline)
    V CV + (visual)
    O CV + (oral)
    VO CV + + (visual and oral)
    FTF CV + + (face-to-face)
  2. Employers set wages \(w_{ij}\) = # mazes could solve in 15 min \(\Pi_i = 4000 - 40 \sum_{j=1}^5 |w_{ij} - A_j|\)

  3. Workers complete 15 min “employment”: realised \(A_j\)

Mobius and Rosenblat (2006)

  1. Payoffs
    1. Firms receive \(\Pi_i\) as on previous slide

    2. Workers receive \(\Pi_j = 100 A_j - 40 |C_j - A_j| + \sum_{i=1}^5W_{ij}\) where \[W_{ij} = \begin{cases}100w_{ij} & \text{with probability }80\%\\\bar{w}_j & \text{with probability } 20\%\end{cases}\]

      Employers know if \(W_{ij} = 100 w_{ij}\) before setting it!

Mobius and Rosenblat (2006)

Results

  1. Beauty does not affect actual performance, but \(\uparrow\) confidence

  2. Beauty premia, but no taste-based discrimination

    B V O VO FTF
    BEAUTY 0.017 0.131** 0.129** 0.124** 0.167**
    (0.040) (0.042) (0.034) (0.036) (0.043)
    SETWAGE -0.010 -0.072 0.098* -0.046 0.033
    (0.055) (0.052) (0.046) (0.048) (0.057)
    SETWAGE x BEAUTY -0.058 -0.099+ 0.005 -0.022 -0.044
    (0.057) (0.053) (0.048) (0.050) (0.058)
    N 163 161 163 162 163

    Source: Table 4 (Mobius and Rosenblat 2006)

  3. Beauty premium: 15-20% due to confidence, 40% - stereotype

Rao (2019)

Field and lab experiments eliciting taste-based discrimination

\(\Delta\) policy in India: elite schools offer free places to poor students

Exploit staggered implementation using DiD

  1. more charitable
  2. changes fundamental notions of fairness and generosity
  3. reduce discrimination (teammate choice in race)
    • high stakes: only 6% choose slower rich over faster poor student
    • low stakes: 33% discriminate against poor students
    • past exposure \(\downarrow\) taste discrimination WTP by 12pp

Doleac and Hansen (2020)

Quasi-random policy experiment measuring statistical discrimination

Ban-the-box (BTB) policy

  • Banning prior criminal convictions box on job applications
  • Hawaii in 1998 \(\longrightarrow\) 34 states + DC in 2015

BTB “does nothing to address the average job readiness of ex-offenders”.

Therefore, statistical discrimination may \(\uparrow\)

Use DiD to measure effect of BTB on employment of minorities

Doleac and Hansen (2020)

Full sample BTB-adopting
White x BTB -0.003 -0.005
(0.006) (0.008)
Black x BTB -0.034** -0.031**
(0.015) (0.014)
Hispanic x BTB -0.023* -0.020
(0.013) (0.015)
Obs. 503,419 231,933
Pre-BTB baseline
White 0.8219 0.8219
Black 0.677 0.677
Hispanic 0.7994 0.7994

Source: Table 4 (Doleac and Hansen 2020)

Glover, Pallais, and Pariente (2017)

Capturing self-fulfilling prophecy of statistical discrimination

Quasi-random assignment of new cashiers to managers in French stores

Do minority cashiers perform worse with biased managers?

Measure manager bias using Implicit Association Test (IAT)

  • 66% moderate to severe bias
  • 20% slight bias

Outcomes: absences, time worked, scanning speed, time between customers

Glover, Pallais, and Pariente (2017)

Absences Overtime (min) Scan per min Inter-customer time (sec)
Minority x Mngr bias 0.012*** -3.237* -0.249** 1.360**
(0.004) (1.678) (0.111) (0.665)
Obs. 4,371 4,163 3,601 3,287
Dep var mean 0.0162 -0.068 18.53 28.7

Sources: Tables III and IV (Glover, Pallais, and Pariente 2017)

Bohren, Hull, and Imas (2025)

Role of gendered recommendation letters on hiring

  • LLM: “female” and “male” recommendation letters
  • Fictitious CVs with “male” and “female” names
  • Survey 396 hiring managers
Recommendation gender
CV name CV CV
CV CV

Bohren, Hull, and Imas (2025)

Hiring likelihood

Prospective wage

Summary

  • Two main frameworks with different implications for labour markets

    • Taste-based discrimination
    • Statistical discrimination
  • Systemic discrimination accumulating over time

  • Simple decomposition to measure unexplained gap

  • Vast experimental and quasi-experimental literature

Next lecture: Intergenerational mobility on 24 Sep

References

Becker, Gary S. 1957. The Economics of Discrimination. Economic Research Studies. Chicago, IL: University of Chicago Press. https://press.uchicago.edu/ucp/books/book/chicago/E/bo22415931.html.
Bertrand, Marianne, and Sendhil Mullainathan. 2004. “Are Emily and Greg More Employable Than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination.” The American Economic Review 94 (4): 991–1013. https://www.jstor.org/stable/3592802.
Black, Dan A. 1995. “Discrimination in an Equilibrium Search Model.” Journal of Labor Economics 13 (2): 309–34. https://www.jstor.org/stable/2535106.
Bohren, J Aislinn, Peter Hull, and Alex Imas. 2025. “Systemic Discrimination: Theory and Measurement*.” The Quarterly Journal of Economics 140 (3): 1743–99. https://doi.org/10.1093/qje/qjaf022.
Cahuc, Pierre. 2004. Labor Economics. Cambridge (Mass.): MIT Press.
Carlana, Michela. 2019. “Implicit Stereotypes: Evidence from TeachersGender Bias*.” The Quarterly Journal of Economics 134 (3): 1163–1224. https://doi.org/10.1093/qje/qjz008.
Doleac, Jennifer L., and Benjamin Hansen. 2020. “The Unintended Consequences of Ban the Box: Statistical Discrimination and Employment Outcomes When Criminal Histories Are Hidden.” Journal of Labor Economics 38 (2): 321–74. https://doi.org/10.1086/705880.
Eberhardt, Markus, Giovanni Facchini, and Valeria Rueda. 2023. “Gender Differences in Reference Letters: Evidence from the Economics Job Market.” The Economic Journal 133 (655): 2676–2708. https://doi.org/10.1093/ej/uead045.
Glover, Dylan, Amanda Pallais, and William Pariente. 2017. “Discrimination as a Self-Fulfilling Prophecy: Evidence from French Grocery Stores.” The Quarterly Journal of Economics 132 (3): 1219–60. https://www.jstor.org/stable/26372702.
Goldin, Claudia, and Cecilia Rouse. 2000. “Orchestrating Impartiality: The Impact of "Blind" Auditions on Female Musicians.” The American Economic Review 90 (4): 715–41. https://www.jstor.org/stable/117305.
Hengel, Erin, and Eunyoung Moon. 2023. “Gender and Equality at Top Economics Journals.” Working Paper. November 2023. https://erinhengel.github.io/Gender-Quality/quality.pdf.
Jalal, Amen. Pre-published. “Screening Women Out? Pay Transparency in Job Search.” https://amenjalal.com.
Le Barbanchon, Thomas, Roland Rathelot, and Alexandra Roulet. 2020. “Gender Differences in Job Search: Trading Off COMMUTE AGAINST WAGE*.” The Quarterly Journal of Economics 136 (1): 381–426. https://doi.org/10.1093/qje/qjaa033.
May, Anna, Johannes Wachs, and Anikó Hannák. 2019. “Gender Differences in Participation and Reward on Stack Overflow.” Empirical Software Engineering 24 (4): 1997–2019. https://doi.org/10.1007/s10664-019-09685-x.
Mobius, Markus M., and Tanya S. Rosenblat. 2006. “Why Beauty Matters.” The American Economic Review 96 (1): 222–35. https://www.jstor.org/stable/30034362.
Oaxaca, Ronald L., and Eva Sierminska. 2023. “Oaxaca-Blinder Meets Kitagawa: What Is the Link?” SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4464602.
Rao, Gautam. 2019. “Familiarity Does Not Breed Contempt: Generosity, Discrimination, and Diversity in Delhi Schools.” American Economic Review 109 (3): 774–809. https://doi.org/10.1257/aer.20180044.
Terrell, Josh, Andrew Kofink, Justin Middleton, Clarissa Rainear, Emerson Murphy-Hill, Chris Parnin, and Jon Stallings. 2017. “Gender Differences and Bias in Open Source: Pull Request Acceptance of Women Versus Men.” PeerJ Computer Science 3 (May): e111. https://doi.org/10.7717/peerj-cs.111.