7. Education Quality

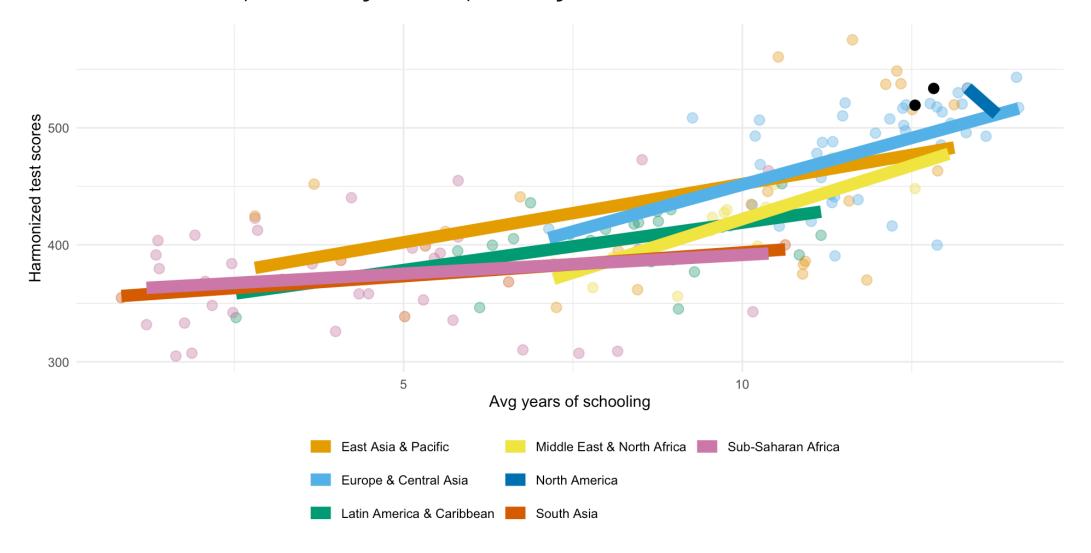
KAT.TAL.322 Advanced Course in Labour Economics

Nurfatima Jandarova

September 15, 2025

Education quality

Knowledge/productivity doesn't rise linearly with years of education.


Production process that takes inputs and develops skills.

Today

- Stylised facts
- Education production function
- (Quasi-)Experimental estimations

Stylised facts

Education quantity vs quality

Source: World Bank

Simple framework

Education output of pupil $m{i}$ in school $m{j}$ in community $m{k}$

$$q_{ijk} = q(P_i, S_{ij}, C_{ik})$$

 P_i are pupil characteristics

where S_{ij} are school inputs

 C_{ik} are non-school inputs

Measures

Output

Years of schooling, standardised test scores, noncognitive skills

Student inputs

Effort, patience, genetics, parental characteristics, family income, family size

School inputs

Teacher characteristics, class sizes, teacher-student ratio, school expenditures, school facilities

Non-school inputs

Peers, local economic conditions, national curricula, regulations, certification rules

Todd and Wolpin (2003)

Achievement of student i in family j at age a

$$q_{ija} = q_a \left(\mathbf{F}_{ij}(a), \mathbf{S}_{ij}(a), \mu_{ij0}, \varepsilon_{ija} \right)$$

 $\mathbf{F}_{ij}(a)$ history of family inputs up to age a

 $\mathbf{S}_{ij}(a)$ history of school inputs up to age a

 μ_{ij0} initial skill endowment

 $arepsilon_{ija}$ measurement error in output

 $q_a(\cdot)$ age-dependent production function

Todd and Wolpin (2003): Contemporaneous specification

$$q_{ija} = q_a(F_{ija}, S_{ija}) + \nu_{ija}$$

Strong assumptions:

- 1. Only current inputs are relevant **OR** inputs are stable over time
- 2. Inputs are uncorrelated with μ_{ij0} or $arepsilon_{ija}$

Todd and Wolpin (2003): Value-added specification

$$q_{ija} = q_a \left(F_{ija}, S_{ija}, q_{a-1} \left[F_{ij}(a-1), S_{ij}(a-1), \mu_{ij0}, \varepsilon_{ij,a-1} \right], \varepsilon_{ija} \right)$$

Typical empirical estimation assumes linear separability and $q_a(\cdot) = q(\cdot)$:

$$q_{ija} = F_{ija}\alpha_F + S_{ija}\alpha_S + \gamma q_{ij,a-1} + \nu_{ija}$$

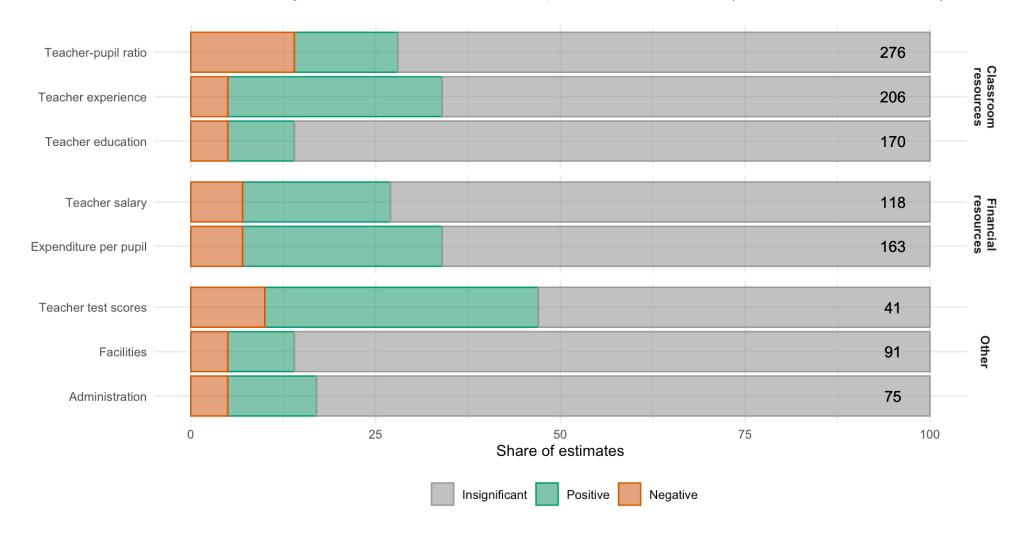
Additional assumptions implied:

- 1. Past input effects decay at the same rate γ
- 2. Shocks $arepsilon_{ija}$ are serially correlated with persistence γ

Todd and Wolpin (2003): Cumulative specification

Still assume linear separability:

$$q_{ija} = \sum_{t=1}^{a} X_{ijt} \alpha_{a-t+1}^{a} + \beta_a \mu_{ij0} + \varepsilon_{ij}(a)$$


Estimation strategies:

- 1. Within-child: $q_{ija} q_{ija'}$ for ages a and a'
- 2. Within-family: $q_{ija} q_{i'ja}$ for siblings i and i'

Each with their own caveats

Early estimates of school inputs (prior to 1995)

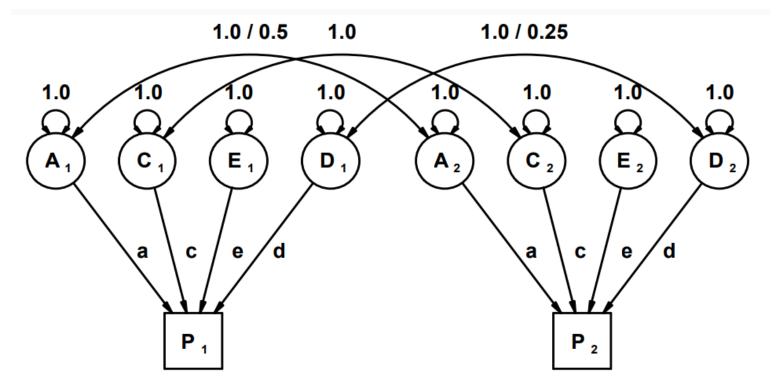
"resources are not closely related to student performance" (Hanushek 2003)

Source: Hanushek (2003), Table 3

Non-experimental estimations

- Require strong assumptions
 - → Some can be relaxed
- Require rich data
- Endogenous allocation of resources

Quasi-experimental estimations


- May not recover structural parameters
- Ignore general equilibrium
- Issues with scaling List (2022)

(Quasi-)Experimental estimations

Productivity of student inputs

Student inputs: nature vs nurture

Twin models (ACDE)

Figure 6.1: Univariate genetic model for data from monozygotic (MZ) or dizygotic (DZ) twins reared together. Genetic and environmental latent variables cause the phenotypes P_1 and P_2 . The correlation between A_1 and A_2 is 1.0 for MZ and 0.5 for DZ twins. The correlation between D_1 and D_2 is 1.0 for MZ and 0.25 for DZ twins.

Source: Neale and Maes (2004)

Student inputs: nature vs nurture

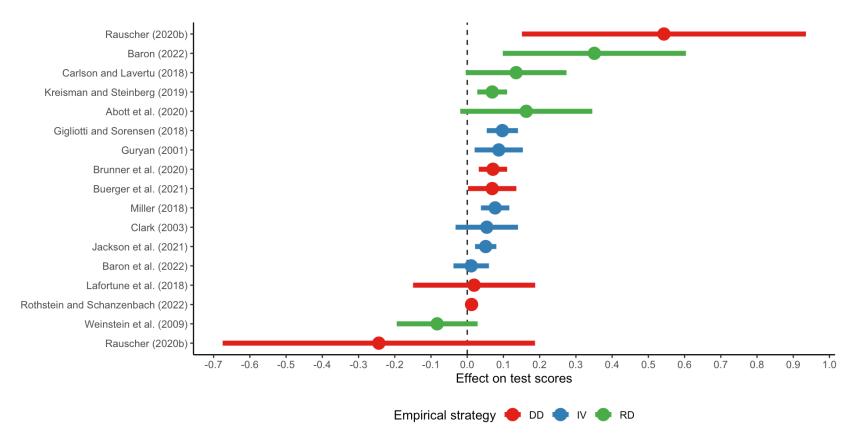
Twin models: Polderman et al. (2015)

Meta-analysis of >17,000 twin-analyses (>1,500 cognitive traits)

- 47% of variation due to genetic factors
- 18% of variation due to shared environment.

Adoption studies

Fagereng, Mogstad, and Rønning (2021): Korean Norwegian


- Wealth: $a^2 \approx 58\%$ and $c^2 \approx 37\%$
- Education: $a^2 \approx 49\%$ and $c^2 \approx 6\%$

Sacerdote (2007): Korean American

• College: $a^2 \approx 41\%$ and $c^2 \approx 16\%$

School expenditures: review by Handel and Hanushek (2023)

Exogenous variation due to court decisions or legislative action

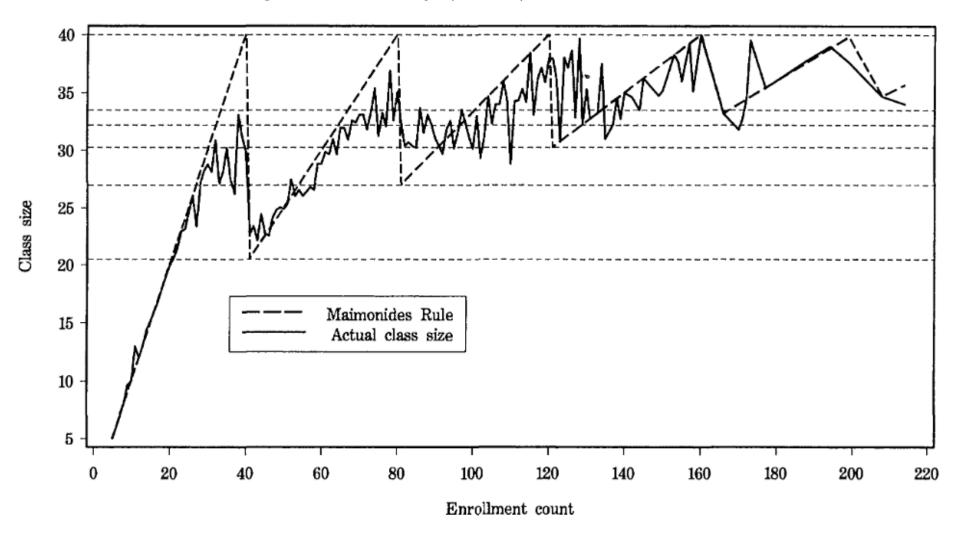
Source: Table 10 (Handel and Hanushek 2023)

School spending: review by Handel and Hanushek (2023)

- Large variation of spending effects on test scores
- Not clear how money was used
- Role of differences in regulatory environments
- Similar results for participation rates are all positive (mostly significant)

Class size: Joshua D. Angrist and Lavy (1999)

Quasi-experimental variation in Israel: Maimonides rule


Rule from Babylonian Talmud, interpreted by Maimonides in XII century:

If there are more than forty [students], two teachers must be appointed

Sharp drops in class sizes with 41, 81, ... cohort sizes in schools

Regression discontinuity design (RDD)

Class size: Joshua D. Angrist and Lavy (1999)

Source: Figure I (Joshua D. Angrist and Lavy 1999)

Class size: Joshua D. Angrist and Lavy (1999)

Maimonides rule:
$$f_{sc} = \frac{E_s}{\inf(\frac{E_s-1}{40})+1}$$

"Fuzzy" RDD

First stage: $n_{sc} = X_{sc}\pi_0 + f_{sc}\pi_1 + \xi_{sc}$

Second stage: $y_{sc} = X_s \beta + n_{sc} \alpha + \eta_s + \mu_c + \epsilon_{sc}$

Class size

Source: Angrist and Lavy 1999

	Grade 4		Grade 5	
	Reading	Math	Reading	Math
Class size	-0.150	0.023	-0.582	-0.443
	(0.128)	(0.160)	(0.181)	(0.236)
Mean score	72.5	68.7	74.5	67.0
SD score	7.8	9.1	8.2	10.2
Obs.	415	415	471	471

Source: Angrist et al. 2019

	Grade 5		
	Reading	Math	
Class size	-0.006	-0.062	
	(0.066)	(0.088)	
Mean score	72.1	68.1	
SD score	17.4	20.6	
Obs.	225 108	226 832	

Class size: Krueger (1999), Chetty et al. (2011)

Project STAR: 79 schools, 6323 children in 1985-86 cohort in Tennessee

Randomly assigned students and teachers into

- small class (13-17 students)
- regular class (22-25 students)
- regular class + teacher's aide (22-25 students)

$$Y = \alpha + \beta_S SMALL + \beta_A AIDE + X\delta + \varepsilon$$

Randomization means students between classes are on average similar

 $\Rightarrow \beta_S$ and β_A are causal

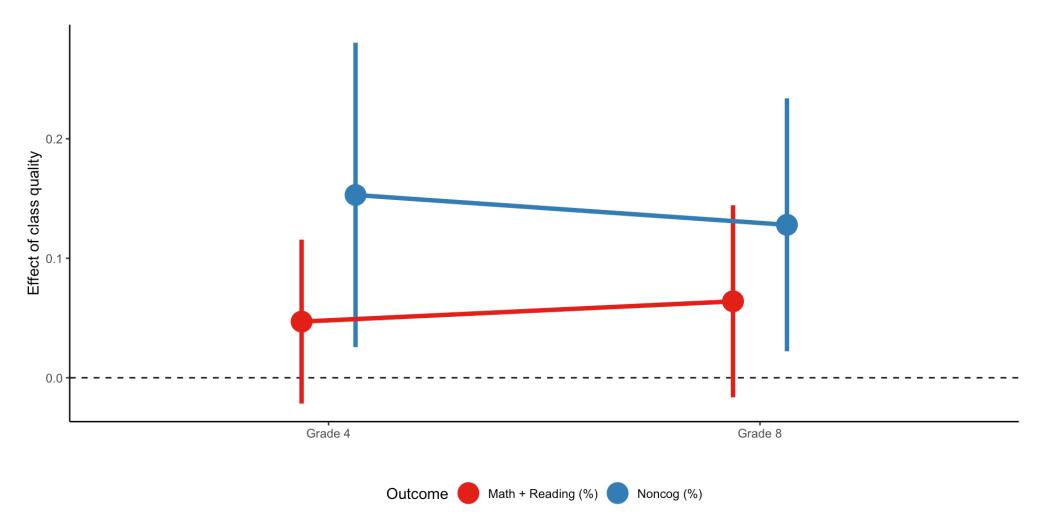
Class size

Source: Table V (Krueger 1999)

	Test scores			
	Kindergarten	Grade 1	Grade 2	Grade 3
SMALL	5.370	6.370	5.260	5.240
	(1.190)	(1.110)	(1.100)	(1.040)

Source: Table V (Chetty et al. 2011)

	Test score, %	College by age 27, %	College quality, \$	Wage earnings, \$
SMALL	4.760	1.570	109.000	-124.000
	(0.990)	(1.070)	(92.600)	(336.000)
Avg dep var	48.67	45.5	27 115	15 912
Obs.	9 939	10 992	10 992	10 992


Class quality: Chetty et al. (2011)

Notice: random assignments of peers (QUAL)

Source: Table VIII (CHETTY ET AL. 2011)

	Test score, %	College by age 27, %	College quality, \$	Wage earnings, \$
QUAL	0.662	0.108	9.328	50.610
	(0.024)	(0.053)	(4.573)	(17.450)
Obs.	9 939	10 959	10 959	10 959

Class quality and noncognitive skills: Chetty et al. (2011)

Source: Table IX (Chetty et al. 2011)

Teacher incentives: Fryer (2013)

2-year pilot program in 2007 among lowest-performing schools in NYC

- 438 eligible schools, 233 offered treatment, 198 accepted, 163 control
- Relative rank of schools in each subscore
- Bonus sizes:
 - → \$3,000/teacher if 100% target
 - → \$1,500/teacher if 75% target

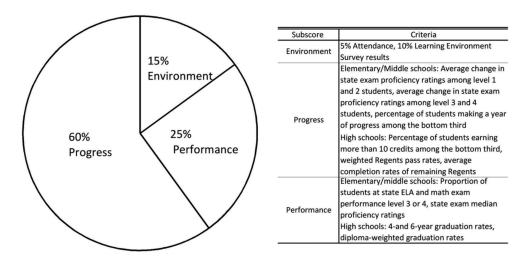


Fig. 1.—Progress report card metrics

Teacher incentives: Fryer (2013)

Instrumental variable approach (LATE = ATT):

$$Y = \alpha_2 + \beta_2 X + \pi_2 \text{ incentive} + \epsilon$$

incentive = $\alpha_1 + \beta_1 X + \pi_1$ treatment + ξ

Teacher incentives: Fryer (2013)

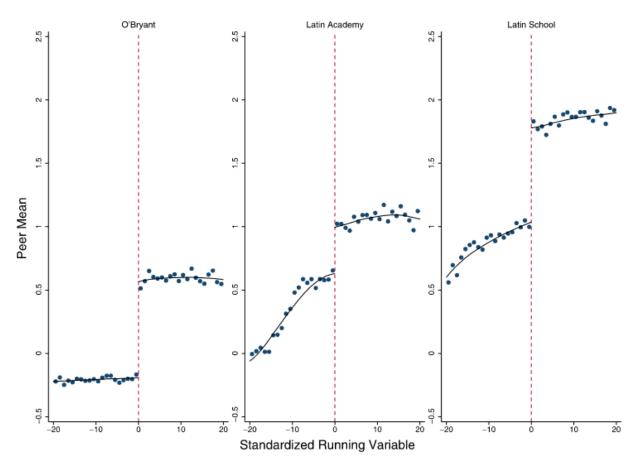
Source: Tables 4 and 5 (Fryer 2013)

	Elementary	Middle	High
English	-0.010	-0.026	-0.003
	(0.015)	(0.010)	(0.043)
Math	-0.014	-0.040	-0.018
	(0.018)	(0.016)	(0.029)

- Incentives too small and too complex
- Bonuses to schools (not teachers)
- Effort of existing teachers vs selection into teaching

Teacher incentives: Biasi (2021)

Change in teacher pay scheme in Wisconsin in 2011:


- seniority pay (SP): collective scheme based on seniority and quals
- flexible pay (FP): bargaining with individual teachers

Main results:

- FP ↑ salary of high-quality teachers relative to low-quality
- high-quality teachers moved to FP districts (low-quality to SP)
- teacher effort ↑ in FP districts relative to SP
- student test scores $\uparrow 0.06\sigma$ (1/3 of effect of \downarrow class size by 5)

Peer effects: Abdulkadiroğlu, Angrist, and Pathak (2014)

Admission to elite high school in Boston

Peer math scores, Figure 2 (Abdulkadiroğlu, Angrist, and Pathak 2014)

Peer effects: Abdulkadiroğlu, Angrist, and Pathak (2014)

Source: Table VI (Abdulkadiroğlu, Angrist, and Pathak 2014)

Parametric	Nonparametric
0.010	0.031
(0.032)	(0.019)
0.003	0.013
(0.041)	(0.026)
-0.011	-0.004
(0.051)	(0.029)
e -0.009	-0.014
(0.032)	(0.017)
	0.010 (0.032) 0.003 (0.041) -0.011 (0.051) e -0.009

Productivity of school inputs Peer effects

Dale and Krueger (2002) study admission into selective colleges in the US

- No effect on average earnings
- † earnings of students from low-income families

Kanninen, Kortelainen, and Tervonen (2023): selective schools in Finland

- † university enrolment and graduation rates
- No impact on income
- Change edu preferences, not skills!

Pop-Eleches and Urquiola (2013): selective schools and tracks in Romania

- † university admission exam score
- J parental investments
- † marginalisation and negative interactions with peers

Curriculum: Alan, Boneva, and Ertac (2019)

RCT among schools in remote areas of Istanbul

Carefully designed curriculum promoting grit (≥ 2 h/week for 12 weeks)

Treated students are more likely to

- set challenging goals
- exert effort to improve their skills
- accumulate more skills
- have higher standardised test scores

These effects persist 2.5 years after the intervention

Curriculum: other evidence

Squicciarini (2020): adoption of technical education in France in 1870-1914

higher resistance in religious areas, led to lower economic development

Machin and McNally (2008): 'literacy hour' introduced in UK in 1998/99

- highly structured framework for teaching
- † English and reading skills of primary schoolchildren

Summary

- Academic achievement is complex function of student, parent, school and non-school inputs
- Measuring achievement can also be difficult
- Genetic and environmental factors from twin studies almost 50/50
- Large variation in school resource effects (from $\ll 0$ to $\gg 0$)
 - → How resources are used?
 - → Which resources are most effective?
- Studies of class size, teacher incentives, peer effects and curricula
- Another (often overlooked) step is scaling up to the population

Next lecture: Technological shift and labour markets on 17 Sep

References

- Abdulkadiroğlu, Atila, Joshua Angrist, and Parag Pathak. 2014. "The Elite Illusion: Achievement Effects at Boston and New York Exam Schools." *Econometrica* 82 (1): 137–96. https://doi.org/10.3982/ECTA10266.
- Alan, Sule, Teodora Boneva, and Seda Ertac. 2019. "Ever Failed, Try Again, Succeed Better: Results from a Randomized Educational Intervention on Grit*." *The Quarterly Journal of Economics* 134 (3): 1121–62. https://doi.org/10.1093/qje/qjz006.
- Angrist, Joshua David, and Jörn-Steffen Pischke. 2009. *Mostly Harmless Econometrics: An Empiricist's Companion*. Princeton: Princeton University Press.
- Angrist, Joshua D., and Victor Lavy. 1999. "Using Maimonides' Rule to Estimate the Effect of Class Size on Scholastic Achievement." *The Quarterly Journal of Economics* 114 (2): 533–75. https://www.jstor.org/stable/2587016.
- Angrist, Joshua D., Victor Lavy, Jetson Leder-Luis, and Adi Shany. 2019. "Maimonides' Rule Redux." *American Economic Review: Insights* 1 (3): 309–24. https://doi.org/10.1257/aeri.20180120.
- Arold, Benjamin W, Paul Hufe, and Marc Stoeckli. forthcoming. "Genetic Endowments, Educational Outcomes, and the Moderating Influence of School Quality." *Journal of Political Economy: Microeconomics*, forthcoming.
 - https://www.paulhufe.net/_files/ugd/ff8cd2_0844e70fa85e409c866eb4b09f6af243.pdf.
- Barcellos, Silvia H., Leandro S. Carvalho, and Patrick Turley. 2018. "Education Can Reduce Health Differences Related to Genetic Risk of Obesity." *Proceedings of the National Academy of Sciences* 115 (42). https://doi.org/10.1073/pnas.1802909115.

- Biasi, Barbara. 2021. "The Labor Market for Teachers Under Different Pay Schemes." *American Economic Journal: Economic Policy* 13 (3): 63–102. https://doi.org/10.1257/pol.20200295.
- Chetty, Raj, John N. Friedman, Nathaniel Hilger, Emmanuel Saez, Diane Whitmore Schanzenbach, and Danny Yagan. 2011. "How Does Your Kindergarten Classroom Affect Your Earnings? Evidence from Project Star *." *The Quarterly Journal of Economics* 126 (4): 1593–1660. https://doi.org/10.1093/qje/qjr041.
- Cunha, Flavio, and James Heckman. 2007. "The Technology of Skill Formation." *American Economic Review* 97 (2): 31–47. https://doi.org/10.1257/aer.97.2.31.
- Dale, Stacy Berg, and Alan B. Krueger. 2002. "Estimating the Payoff to Attending a More Selective College: An Application of Selection on Observables and Unobservables." *The Quarterly Journal of Economics* 117 (4): 1491–1527. https://www.jstor.org/stable/4132484.
- Fagereng, Andreas, Magne Mogstad, and Marte Rønning. 2021. "Why Do Wealthy Parents Have Wealthy Children?" *Journal of Political Economy* 129 (3): 703–56. https://doi.org/10.1086/712446.
- Fryer, Roland G. 2013. "Teacher Incentives and Student Achievement: Evidence from New York City Public Schools." *Journal of Labor Economics* 31 (2): 373–407. https://doi.org/10.1086/667757.
- Handel, Danielle Victoria, and Eric A. Hanushek. 2023. "US School Finance: Resources and Outcomes." In *Handbook of the Economics of Education*, 7:143–226. Elsevier. https://doi.org/10.1016/bs.hesedu.2023.03.003.
- Hanushek, Eric A. 2003. "The Failure of Input-based Schooling Policies." *The Economic Journal* 113 (485): F64–98. https://doi.org/10.1111/1468-0297.00099.
- Kanninen, Ohto, Mika Kortelainen, and Lassi Tervonen. 2023. "Long-Run Effects of Selective Schools on Educational and Labor Market Outcomes." VATT Working Papers. Helsinki. December 2023. https://www.doria.fi/bitstream/handle/10024/188274/vatt-working-papers-161-long-run-effects-of-selective-schools-on-educational-and-labor-market-outcomes.pdf?sequence=1&isAllowed=y.

- Krueger, Alan B. 1999. "Experimental Estimates of Education Production Functions." *The Quarterly Journal of Economics* 114 (2): 497–532. https://www.jstor.org/stable/2587015.
- List, John A. 2022. The Voltage Effect: How to Make Good Ideas Great and Great Ideas Scale. 1st ed. New York: Crown Currency.
- Machin, Stephen, and Sandra McNally. 2008. "The Literacy Hour." *Journal of Public Economics* 92 (5): 1441–62. https://doi.org/10.1016/j.jpubeco.2007.11.008.
- Neale, Michael C., and Hermine H M Maes. 2004. *Methodology for Genetic Studies of Twins and Families*. Dordrecht, The Netherlands: Kluwer Academic Publishers B. V.
- Polderman, Tinca J. C., Beben Benyamin, Christiaan A. de Leeuw, Patrick F. Sullivan, Arjen van Bochoven, Peter M. Visscher, and Danielle Posthuma. 2015. "Meta-Analysis of the Heritability of Human Traits Based on Fifty Years of Twin Studies." *Nature Genetics* 47 (7): 702–9. https://doi.org/10.1038/ng.3285.
- Pop-Eleches, Cristian, and Miguel Urquiola. 2013. "Going to a Better School: Effects and Behavioral Responses." *American Economic Review* 103 (4): 1289–1324. https://doi.org/10.1257/aer.103.4.1289.
- Rauscher, Emily. 2020. "Does Money Matter More in the Country? Education Funding Reductions and Achievement in Kansas, 2010–2018." *AERA Open* 6 (4): 2332858420963685. https://doi.org/10.1177/2332858420963685.
- Sacerdote, Bruce. 2007. "How Large Are the Effects from Changes in Family Environment? A Study of Korean American Adoptees*." *The Quarterly Journal of Economics* 122 (1): 119–57. https://doi.org/10.1162/qjec.122.1.119.
- Squicciarini, Mara P. 2020. "Devotion and Development: Religiosity, Education, and Economic Progress in Nineteenth-Century France." *American Economic Review* 110 (11): 3454–91. https://doi.org/10.1257/aer.20191054.
- Todd, Petra E., and Kenneth I. Wolpin. 2003. "On the Specification and Estimation of the Production