6. Human Capital

KAT.TAL.322 Advanced Course in Labour Economics

Nurfatima Jandarova

September 10, 2025

Human capital

Labour heterogeneity is important for labour supply and demand.

Human capital includes **education**, training, health investments.

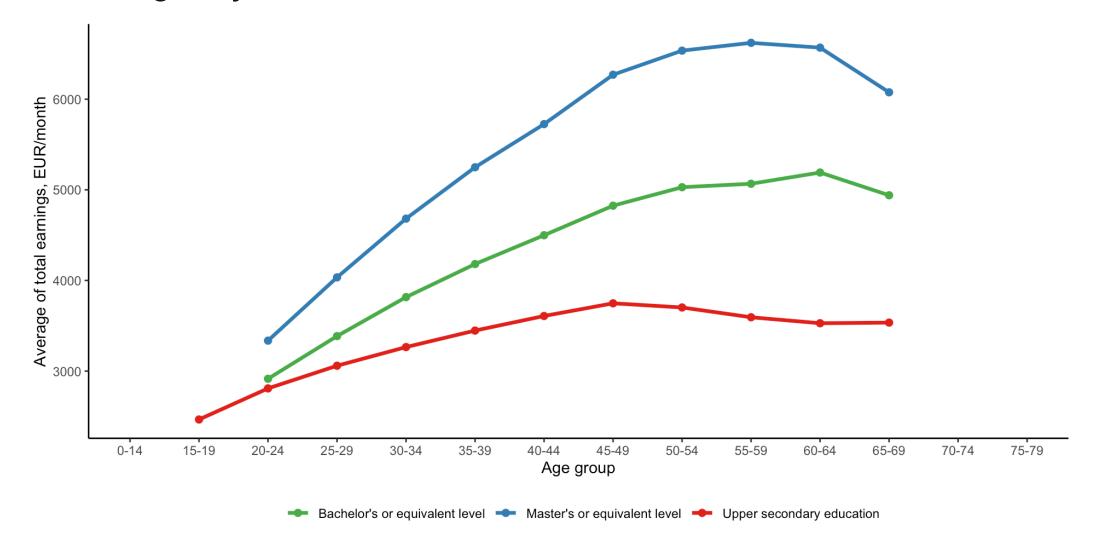
First references as early as Adam Smith; formalised by Becker in 1960s.

Today

- Stylised facts
- Productive human capital investments
- Signalling theory
- Returns to education

Stylised facts

Overview

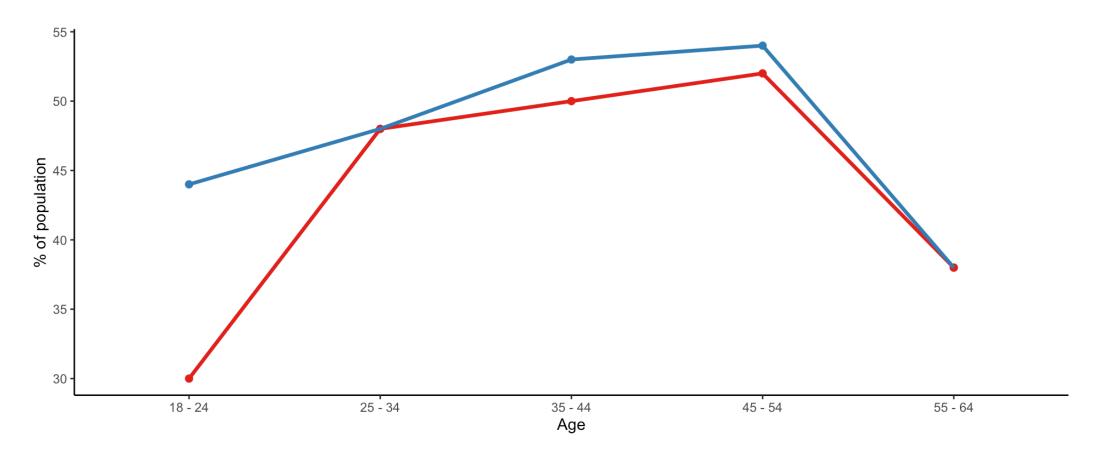

Human capital is an investment

- benefit: gain in earnings
- cost: tuition, foregone earnings, psychological costs

Two main camps for source of gain in earnings:

- gain in productivity
- signalling

Earnings by education



Human capital production function

Typically, univariate (years of education), it can be complex function of

- Innate skills (e.g., genetics)
- Parental investments (e.g., day care, time spent with children, tutors)
- Schooling/formal education
 - → Quantity (e.g., high school vs university)
 - → School quality (e.g., teacher quality, expenditure per student)
 - → Differences in curricula/fields (e.g., STEM vs arts)
- Peers (e.g., at school, at work)
- On-the-job training (e.g., general vs specific skills)

Adult education

- Participants in adult education and training related to work or occupation, %
- Participants in adult education and training, %

Productive human capital investments

Basic model

Assume education choice $S \in \{HS, C\}$

Worker with S produces Y_S goods when employed by a firm

Perfect competition ensures that $W_{HS} = Y_{HS}$ and $W_C = Y_C$

Assume cost of education given by function $\eta(S)$

Then choose college if marginal benefit outweighs marginal cost

$$S = C \iff W_C - W_{HS} \ge \eta(C) - \eta(HS)$$

Lifecycle model: simplified Ben-Porath (1967)

- Divide time between schooling/training $\sigma(t)$ and working $1 \sigma(t)$
- Law of motion of HC: $\dot{h}(t) = \theta \sigma(t) h(t)$
- Production function per worker: $y(t) = Ah(t) \equiv w(t)$
- Assume linear utility and no utility cost of $\sigma(t)$

$$\Omega = \int_0^T (1 - \sigma(t)) Ah(t)e^{-rt} dt$$
 s.t. HC law of motion

Marginal return to HC effort $\sigma(t)$ is

$$\frac{\partial \Omega}{\partial \sigma(t)} = -Ah(t)e^{-rt} + \int_0^T (1 - \sigma(z))A \frac{\partial h(z)}{\partial \sigma(t)}e^{-rz} dz$$

$$\frac{\partial \Omega}{\partial \sigma(t)} = -Ah(t)e^{-rt} + A\theta \int_{t}^{T} (1 - \sigma(z)) h(z)e^{-rz} dz$$
foregone earnings
discounted future payoff

Lifecycle model: simplified Ben-Porath (1967)

Optimal effort is zero at low efficiency θ and high discount rate r

The change in marginal return over time is given by

$$\frac{d}{dt} \left(\frac{\partial \Omega}{\partial \sigma(t)} \right) = Ah(t)e^{-rt} (r - \theta)$$

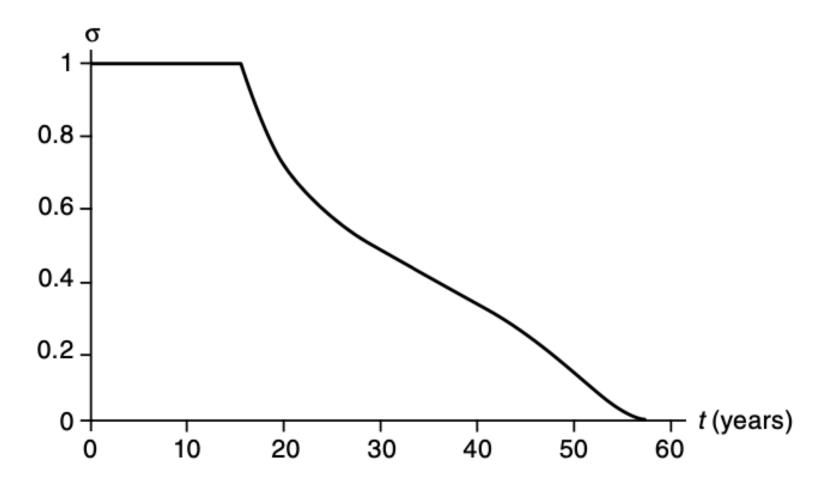
If $r > \theta$, then marginal return \uparrow over time, but is negative at T:

$$\frac{\partial \Omega}{\partial \sigma(T)} = -Ah(T)e^{-rT} < 0$$

Hence, marginal return at every period is negative $\Rightarrow \sigma^*(t) = 0 \quad \forall t$

Lifecycle model: simplified Ben-Porath (1967)

Optimal effort when efficiency θ is high or discount rate r is low


Marginal return \downarrow over time \Rightarrow may exist t=s such that $\frac{\partial \Omega}{\sigma(s)}=0$

- initial investment into education $\sigma^*(t) = 1$, $\forall t \leq s$
- work rest of the time $\sigma^*(t) = 0$, $\forall t > s$
- study longer if θ higher

$$s = \begin{cases} T + \frac{1}{r} \ln\left(\frac{\theta - r}{\theta}\right) & \text{if } \theta \ge \frac{r}{1 - e^{-rT}} \\ 0 & \text{otherwise} \end{cases}$$

Lifecycle model: Ben-Porath (1967)

Allows for human-capital depreciation and on-the-job training

Source: Figure 4.9 from Cahuc (2004)

Signalling theory

Basic model

- Two types of productivity θ_H and θ_L
- Education e costs $c_i = \frac{e}{\theta_i}$
- Linear utility $w c_i$, $\forall i \in \{H, L\}$

Observable types

Free entry ensure $w = \theta_i \Rightarrow e_i^* = 0, \ \forall i \in \{H, L\}$

Unobservable types

- Low type gets no education $e_L^*=0$ and a payoff $heta_L$
- High type gets $e_H^* = heta_L \; (heta_H heta_L)$ and a payoff $heta_H rac{ heta_L (heta_H heta_L)}{ heta_H}$

Returns to education

J. Mincer (1958)

- E(S) earnings with S years of schooling
- Assume no direct cost of education
- Internal rate of return: r that equates costs and benefits

Present value of earnings
$$P(S) = \int_S^T E(S)e^{-rt} dt = E(S)\frac{e^{-rS} - e^{-rT}}{r}$$

$$P(S) = P(0) \Rightarrow \ln E(S) \approx \ln E(0) + rS$$

Source: J. A. Mincer (1974), Table 5.1

Regression
$$R^2$$

 $\ln w = 7.58 + 0.070S \ 0.067$

J. A. Mincer (1974)

Accounting for experience

Building on Ben-Porath (1967)

- t(x) share of time dedicated to training at x experience and s
- HC law of motion: $\dot{h}(s+x) = \rho_1 t(x) h(s+x), \ \forall x \in [0, T-s]$

$$\ln w(s+x) = \ln w(0) + \rho s + \rho_1 t(0) x - \rho_1 \frac{t(0)}{2T} x^2$$

Source: J. A. Mincer (1974), Table 5.1

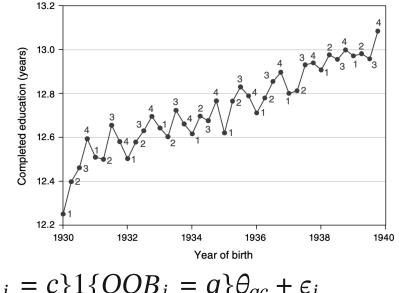
Regression R^2 $\ln w = 6.20 + 0.107S + 0.081X - 0.0012X^2$ 0.285

OLS estimates of returns to schooling

Potential issues

- Endogeneity of schooling and earnings
 - → Cognitive and noncognitive abilities (Heckman, Stixrud, and Urzua 2006)
- Return to education is same regardless of duration of study
- Does not take into account direct costs of education
- Heterogeneity of returns (e.g., family background, schooling system)
- Years of schooling vs qualifications
- Productivity vs signalling interpretation

Angrist and Krueger (1991)


Compulsory schooling laws: exogenous variation by quarter of birth

Instrumental variable approach

Local Average Treatment Effect (LATE)

$$\ln W_{icq} = \beta X_i + \rho E_i + \sum_{c} 1\{YOB_i = c\} \xi_c + \mu_i$$

$$E_{icq} = \pi X_i + \sum_{c} 1\{YOB_i = c\}\delta_c + \sum_{c} \sum_{q} 1\{YOB_i = c\}1\{QOB_i = q\}\theta_{qc} + \epsilon_i$$

Angrist and Krueger (1991)

IV estimates of returns to education ρ

	cohort30	cohort40
r	0.076	0.095
	(0.029)	(0.022)
Weak IV F-stat	1.6	3.2

Issues:

- Instrument is weak (IV estimates are inflated)
- Who are the compliers? Endogeneity? External validity?

Some other IV approaches

	Instrument	Estimated ρ
Card (1993)	Proximity to college	0.132 (0.055)
Cameron and Taber (2004)	Proximity to college	0.228 (0.109)
Cameron and Taber (2004)	Earnings in local labour market	0.057 (0.115)
Kane and Rouse (1995)	College tuition fees	0.116 (0.045)
Oreopoulos (2007)	Changes in compulsory schooling laws	0.133 (0.0118) US 0.084 (0.0267) Canada 0.158 (0.0491) UK

Twin studies

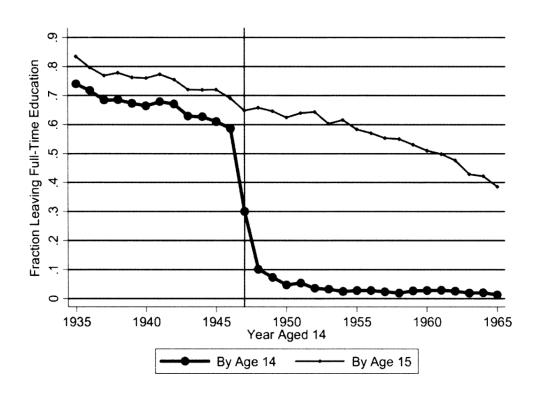
$$\ln w_{ij} = \alpha + \rho s_{ij} + A_j + \varepsilon_{ij}, \ \forall i \in \{1, 2\}$$

$$\Delta \ln w_j = \rho \Delta s_j + \Delta \varepsilon_j$$

Estimated ρ

Ashenfelter and Rouse (1998)

0.088 (0.025)


Oreopoulos and Salvanes (2011) 0.0476 (0.0026)

Regression discontinuity design: Oreopoulos (2006)

UK 1947: raised min school leaving age (ROSLA) from 14 to 15 Compare similar people just before and after policy change

Estimated $\rho = 0.069 (0.040)$

Second reform in 1972: min SLA ↑ from 15 to 16
Small (or zero) return (Dickson and Smith 2011)

Source: Figure 1 from Oreopoulos (2006)

Carneiro, Heckman, and Vytlacil (2011)

- Many papers estimate sizable returns to schooling
- Average dropout rate in OECD 17% in 2020
- Heterogeneity in returns to schooling

Role of individual characteristics? E.g., patience (Cadena and Keys 2015)

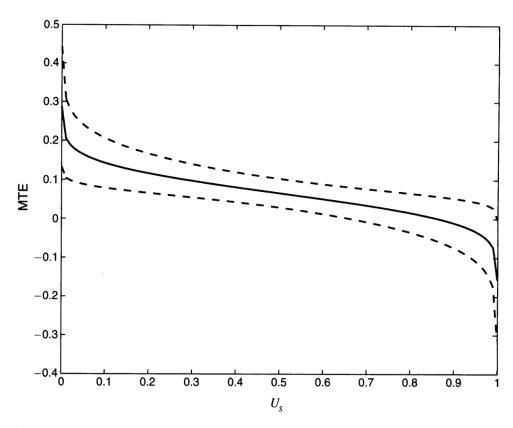


FIGURE 1. MTE ESTIMATED FROM A NORMAL SELECTION MODEL

Source: Carneiro, Heckman, and Vytlacil (2011)

Productivity or signalling?

Hard question to answer

Productivity

- [No] upstream effects of ROSLA on qualifications (Chevalier et al. 2004)
- Student riots, ↑ passes, ↑ higher edu, ↑ wages (Maurin and McNally 2008)
- RDD of just passing/failing high school exam: no effect (Clark and Martorell 2014)

Signalling

- Employer learning: 30% of returns due to signalling (Aryal, Bhuller, and Lange 2022)
- Positive effect of degree classes (Feng and Graetz 2017)

Summary

- Education is a human capital investment
- Models describing the investment decisions treat education as productivity enhancing and/or signalling device
- Empirical estimates suggest sizable wage returns to a year of schooling
- However, still a lot of debate about causality, heterogeneity and interpretation

Next: Education Quality

References

- Angrist, Joshua D., and Alan B. Krueger. 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?*." *The Quarterly Journal of Economics* 106 (4): 979–1014. https://doi.org/10.2307/2937954.
- Aryal, Gaurab, Manudeep Bhuller, and Fabian Lange. 2022. "Signaling and Employer Learning with Instruments." *American Economic Review* 112 (5): 1669–1702. https://doi.org/10.1257/aer.20200146.
- Ashenfelter, Orley, and Cecilia Rouse. 1998. "Income, Schooling, and Ability: Evidence from a New Sample of Identical Twins." *The Quarterly Journal of Economics* 113 (1): 253–84. https://www.jstor.org/stable/2586991.
- Ben-Porath, Yoram. 1967. "The Production of Human Capital and the Life Cycle of Earnings." *Journal of Political Economy* 75 (4): 352–65. https://www.jstor.org/stable/1828596.
- Cadena, Brian C., and Benjamin J. Keys. 2015. "Human Capital and the Lifetime Costs of Impatience."

 American Economic Journal: Economic Policy 7 (3): 126–53. https://doi.org/10.1257/pol.20130081.
- Cahuc, Pierre. 2004. Labor Economics. Cambridge (Mass.): MIT Press.
- Cameron, Stephen V., and Christopher Taber. 2004. "Estimation of Educational Borrowing Constraints Using Returns to Schooling." *Journal of Political Economy* 112 (1): 132–82. https://doi.org/10.1086/379937.
- Card, David. 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling." NBER Working Paper. Cambridge, MA. October 1993. https://doi.org/10.3386/w4483.
- ——. 1999. "The Causal Effect of Education on Earnings." In *Handbook of Labor Economics*, 3:1801–63. Elsevier. https://doi.org/10.1016/S1573-4463(99)03011-4.

- Carneiro, Pedro, James J. Heckman, and Edward J. Vytlacil. 2011. "Estimating Marginal Returns to Education." *The American Economic Review* 101 (6): 2754–81. https://www.jstor.org/stable/23045657.
- Chevalier, Arnaud, Colm Harmon, Ian Walker, and Yu Zhu. 2004. "Does Education Raise Productivity, or Just Reflect It?" *The Economic Journal* 114 (499): F499–517. https://www.jstor.org/stable/3590169.
- Clark, Damon, and Paco Martorell. 2014. "The Signaling Value of a High School Diploma." *Journal of Political Economy* 122 (2): 282–318. https://doi.org/10.1086/675238.
- Cunha, Flavio, and James Heckman. 2007. "The Technology of Skill Formation." *American Economic Review* 97 (2): 31–47. https://doi.org/10.1257/aer.97.2.31.
- Dickson, Matt, and Sarah Smith. 2011. "What Determines the Return to Education: An Extra Year or a Hurdle Cleared?" *Economics of Education Review*, Special Issue: Economic Returns to Education, 30 (6): 1167–76. https://doi.org/10.1016/j.econedurev.2011.05.004.
- Feng, Andy, and Georg Graetz. 2017. "A Question of Degree: The Effects of Degree Class on Labor Market Outcomes." *Economics of Education Review* 61 (December): 140–61. https://doi.org/10.1016/j.econedurev.2017.07.003.
- Heckman, James, Jora Stixrud, and Sergio Urzua. 2006. "The Effects of Cognitive and Noncognitive Abilities on Labor Market Outcomes and Social Behavior." *Journal of Labor Economics* 24 (3): 411–82.
- Kane, Thomas J., and Cecilia Elena Rouse. 1995. "Labor-Market Returns to Two- and Four-Year College." *The American Economic Review* 85 (3): 600–614. https://www.jstor.org/stable/2118190.
- Maurin, Eric, and Sandra McNally. 2008. "Vive La Révolution! Long-Term Educational Returns of 1968 to the Angry Students." *Journal of Labor Economics* 26 (1): 1–33. https://doi.org/10.1086/522071.
- Mincer, Jacob. 1958. "Investment in Human Capital and Personal Income Distribution." *Journal of Political Economy* 66 (4): 281–302. https://www.jstor.org/stable/1827422.

- Mincer, Jacob A. 1974. *Schooling, Experience, and Earnings*. Book. National Bureau of Economic Research. https://www.nber.org/books-and-chapters/schooling-experience-and-earnings.
- Oreopoulos, Philip. 2006. "Estimating Average and Local Average Treatment Effects of Education When Compulsory Schooling Laws Really Matter." *American Economic Review* 96 (1): 152–75. https://doi.org/10.1257/000282806776157641.
- ——. 2007. "Do Dropouts Drop Out Too Soon? Wealth, Health and Happiness from Compulsory Schooling." *Journal of Public Economics* 91 (11–12): 2213–29. https://doi.org/10.1016/j.jpubeco.2007.02.002.
- Oreopoulos, Philip, and Kjell G Salvanes. 2011. "Priceless: The Nonpecuniary Benefits of Schooling." Journal of Economic Perspectives 25 (1): 159–84. https://doi.org/10.1257/jep.25.1.159.