
KAT.TAL.322 Advanced Course in Labour Economics
September 1, 2025
Firm decisions about how much labour to hire
Production function \(Y = F(L)\) where \(F^\prime > 0\) and \(F^{\prime\prime} < 0\)
\[ \max_{L} PF(L) - WL \]
FOC: \(F^\prime(L) = \frac{W}{P}\)
Downward-sloping labour demand
\[ \frac{\partial L}{\partial W} = \frac{1}{PF^{\prime\prime}(L)} < 0 \]
Production function \(Y = F(L, K)\) where \(F_L > 0, F_K > 0, F_{LL} < 0, F_{KK} < 0\)
Cost minimization problem: \(\min_{L, K} C(L, K) = WL + RK\) s.t. \(F(L, K) = \bar{Y}\)
Conditional demand: \(\bar{K}(W, R, \bar{Y})\) and \(\bar{L}(W, R, \bar{Y})\)
\[ \frac{F_L(\bar{L}, \bar{K})}{F_K(\bar{L}, \bar{K})} = \frac{W}{R} \quad\text{and}\quad F(\bar{L}, \bar{K}) = \bar{Y} \]
Own-price elasticities: \(\eta_W^L = \frac{\partial \ln \bar{L}}{\partial \ln W} < 0\) and \(\eta_R^K = \frac{\partial \ln \bar{K}}{\partial \ln R} < 0\)
Cross-price elasticities: \(\eta_R^L = \frac{\partial \ln \bar{L}}{\partial \ln R} > 0\) and \(\eta_W^K = \frac{\partial \ln \bar{K}}{\partial \ln W} > 0\)
Elasticity of substitution \(\sigma = \frac{\partial \ln\left(\frac{K}{L}\right)}{\partial \ln \left(\frac{W}{R}\right)} > 0\)
It is also possible to show that
\[ \eta_R^L = \sigma (1 - s) \quad \text{and} \quad \eta_W^L = -\sigma(1 - s) \]
where \(s = \frac{WL}{C}\) is labour share in total cost
Second step: \(\max_{Y} PY - C(W, R, Y)\)
Solution: \(P = C_Y(W, R, Y^*), L^* = \bar{L}(W, R, Y^*), K^* = \bar{K}(W, R, Y^*)\)
Total elasticities decomposed into substitution and scale effects:
\[ \varepsilon_W^L = \color{#8e2f1f}{\eta_W^L} + \color{#288393}{\eta_Y^L \varepsilon_W^Y} < 0 \]
\[ \varepsilon_R^L = \color{#8e2f1f}{\eta_R^L} + \color{#288393}{\eta_Y^L\varepsilon_R^Y} \lessgtr 0 \]
Shephard’s lemma: \(\bar{L} = \frac{\partial C}{\partial W} \quad \Rightarrow \quad s = \frac{\partial \ln C}{\partial \ln W}\)
Specify functional form of \(\ln C\)
Example: translog cost function with \(n\) inputs
\[ \ln C = a_0 + \sum_{i = 1}^n a_i \ln W_i + \frac{1}{2} \sum_{i = 1}^n \sum_{j = 1}^n a_{ij} \ln W_i \ln W_j + \frac{1}{\theta} \ln Y \]
Regress input share \(s_i\) on \(\frac{\partial \ln C}{\partial \ln W_i}\)
Use estimated parameters to compute \(\sigma_{ij}\)
Endogeneity
General equilibrium
Definitions of variables
Review by Hamermesh (1996) concludes that \(-\eta_W^L \in [0.15, 0.75]\).
If \(\eta_W^L = -0.30\) and given that \(s \approx 0.7\),
\[ \sigma = \frac{-\eta_W^L}{1 - s} \approx 1 \]
consistent with the Cobb-Douglas production function.
The review also suggests \(-\varepsilon_W^L \approx 1 \Rightarrow\) large scale effect.
Source: Eurostat
Quadratic cost: \(C\left(\Delta L_t\right) = b\left(\Delta L_t - a\right)^2\)
Asymmetric convex costs: \(C\left(\Delta L_t\right) = -1 + e^{a\Delta L_t} - a\Delta L_t + \frac{b}{2}\left(\Delta L_t\right)^2\)
Linear cost: \(C\left(\Delta L_t\right) = \begin{cases}c_h \Delta L_t & \text{if }\Delta L_t \geq 0\\-c_f \Delta L_t & \text{if }\Delta L_t \leq 0\end{cases}\)
Fixed cost
For simplicity, assume single-input: \(Y_t = F(L_t)\)
Continuous time: \(\Delta L_t = \dot{L}_t = \frac{\text{d} L_t}{\text{d}t}\)
\[ \Pi_0 = \int_0^\infty \Pi_t dt = \int_0^\infty \left[F(L_t) - W_tL_t - \frac{b}{2}\dot{L}_t^2\right]e^{-rt}~\text{d}t \]
Euler equation: \(\frac{\partial \Pi_t}{\partial L} = \frac{\text{d}}{\text{d}t}\left(\frac{\partial \Pi_t}{\partial \dot{L}_t}\right)\)
\[ b\ddot{L}_t - rb\dot{L}_t + F'(L_t) - W_t = 0 \]
Optimal path: \(\dot{L}_t = \gamma \left[L^* - L_t\right]\) where \(\gamma\) is decreasing in \(b\).
Figure 9.6 Optimal employment over a cycle (Nickell 1986)
\[ \Pi_0 = \int_0^\infty \left[F(L_t) - W_tL_t - C(\dot{L}_t)\right]e^{-rt}dt \]
where \(C\left(\dot{L}_t\right) = \begin{cases}c_h \dot{L}_t & \text{if }\dot{L}_t \geq 0\\-c_f \dot{L}_t & \text{if }\dot{L}_t \leq 0\end{cases}\)
Optimal labour demand path is derived from
\[ \begin{cases}F'(L_t) = W_t + r c_h & \text{if }\dot{L}_t \geq 0 \\ F'(L_t) = W_t - r c_f & \text{if }\dot{L}_t < 0\end{cases} \]
Figure 9.10 Optimal employment over the cycle (Nickell 1986)
Quadratic adjustment cost
Assume linear quadratic production function
Estimate \(L_{it} = \lambda L_{i, t - 1} + X_{it} \beta + \mu_i + \varepsilon_{it}\)
Adjustments happen fast (1-2 quarters) (Hamermesh 1996, chap. 7)
Dynamic substitutes: utilization of capital increases with \(L_t - L^*\)
Hours of work are adjusted faster than number of workers

What do the models we have considered so far predict?
lower labour demand (both compensated and uncompensated)
(maybe) higher labour supply
Not always supported by empirical evidence!
On April 1, 1992 minimum wage in New Jersey \(\uparrow\) from $4.25 to $5.05.
It stayed at $4.25 in Pennsylvania.



Seattle \(\uparrow\) min wage from $9.47 up to
Causal design:
However,
same policy + synthetic control = no change in employment
Review in Clemens (2021)
Basic static and dynamic models of labour demand
Application to minimum wage policy
Next lecture: Job Search on 03 Sep