KAT.TAL.322 Advanced Course in Labour Economics
September 1, 2025
Firm decisions about how much labour to hire
Production function Y=F(L) where F′>0 and F′′<0
maxLPF(L)−WL
FOC: F′(L)=WP
Downward-sloping labour demand
∂L∂W=1PF′′(L)<0
Production function Y=F(L,K) where FL>0,FK>0,FLL<0,FKK<0
Cost minimization problem: minL,KC(L,K)=WL+RK s.t. F(L,K)=ˉY
Conditional demand: ˉK(W,R,ˉY) and ˉL(W,R,ˉY)
FL(ˉL,ˉK)FK(ˉL,ˉK)=WRandF(ˉL,ˉK)=ˉY
Own-price elasticities: ηLW=∂lnˉL∂lnW<0 and ηKR=∂lnˉK∂lnR<0
Cross-price elasticities: ηLR=∂lnˉL∂lnR>0 and ηKW=∂lnˉK∂lnW>0
Elasticity of substitution σ=∂ln(KL)∂ln(WR)>0
It is also possible to show that
ηLR=σ(1−s)andηLW=−σ(1−s)
where s=WLC is labour share in total cost
Second step: maxYPY−C(W,R,Y)
Solution: P=CY(W,R,Y∗),L∗=ˉL(W,R,Y∗),K∗=ˉK(W,R,Y∗)
Total elasticities decomposed into substitution and scale effects:
εLW=ηLW+ηLYεYW<0
εLR=ηLR+ηLYεYR≶0
Shephard’s lemma: ˉL=∂C∂W⇒s=∂lnC∂lnW
Specify functional form of lnC
Example: translog cost function with n inputs
lnC=a0+n∑i=1ailnWi+12n∑i=1n∑j=1aijlnWilnWj+1θlnY
Regress input share si on ∂lnC∂lnWi
Use estimated parameters to compute σij
Endogeneity
General equilibrium
Definitions of variables
Review by Hamermesh (1996) concludes that −ηLW∈[0.15,0.75].
If ηLW=−0.30 and given that s≈0.7,
σ=−ηLW1−s≈1
consistent with the Cobb-Douglas production function.
The review also suggests −εLW≈1⇒ large scale effect.
Source: Eurostat
Quadratic cost: C(ΔLt)=b(ΔLt−a)2
Asymmetric convex costs: C(ΔLt)=−1+eaΔLt−aΔLt+b2(ΔLt)2
Linear cost: C(ΔLt)={chΔLtif ΔLt≥0−cfΔLtif ΔLt≤0
Fixed cost
For simplicity, assume single-input: Yt=F(Lt)
Continuous time: ΔLt=˙Lt=dLtdt
Π0=∫∞0Πtdt=∫∞0[F(Lt)−WtLt−b2˙L2t]e−rt dt
Euler equation: ∂Πt∂L=ddt(∂Πt∂˙Lt)
b¨Lt−rb˙Lt+F′(Lt)−Wt=0
Optimal path: ˙Lt=γ[L∗−Lt] where γ is decreasing in b.
Figure 9.6 Optimal employment over a cycle (Nickell 1986)
Π0=∫∞0[F(Lt)−WtLt−C(˙Lt)]e−rtdt
where C(˙Lt)={ch˙Ltif ˙Lt≥0−cf˙Ltif ˙Lt≤0
Optimal labour demand path is derived from
{F′(Lt)=Wt+rchif ˙Lt≥0F′(Lt)=Wt−rcfif ˙Lt<0
Figure 9.10 Optimal employment over the cycle (Nickell 1986)
Quadratic adjustment cost
Assume linear quadratic production function
Estimate Lit=λLi,t−1+Xitβ+μi+εit
Adjustments happen fast (1-2 quarters) (Hamermesh 1996, chap. 7)
Dynamic substitutes: utilization of capital increases with Lt−L∗
Hours of work are adjusted faster than number of workers
What do the models we have considered so far predict?
lower labour demand (both compensated and uncompensated)
(maybe) higher labour supply
Not always supported by empirical evidence!
On April 1, 1992 minimum wage in New Jersey ↑ from $4.25 to $5.05.
It stayed at $4.25 in Pennsylvania.
Seattle ↑ min wage from $9.47 up to
Causal design:
However,
same policy + synthetic control = no change in employment
Review in Clemens (2021)
Basic static and dynamic models of labour demand
Application to minimum wage policy
Next lecture: Job Search on 03 Sep