# Does intelligence shield children from the effects of parental unemployment?

Nurfatima Jandarova

University of Minnesota, Department of Economics

| Research question                                                    | Analysis                                              | Results                                                   |  |  |
|----------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|--|--|
| Parental job loss reduces children's<br>• education                  | Difference-in-differences framework                   | - Parent unemp is more harmful for education at high $IQ$ |  |  |
| <ul><li>labour-market outcomes</li><li>well-being, beliefs</li></ul> | Understanding Society (UK) data<br>• wave 3 (2011-13) | • Children start at lower-paying jobs                     |  |  |
|                                                                      |                                                       | • Switch to stable and better-paying jobs later           |  |  |
| New evidence                                                         | • parent unemp at age 14 $(UP)$                       | • Wages continue to suffer from foregone education        |  |  |
| How does intelligence change these effects?                          | • intelligence score $(IQ)$                           |                                                           |  |  |

Y - outcome, UP - parental unemployment indicator; IQ - intelligence score

## **Descriptive evidence**

 $\operatorname{Gap} = \mathbb{E}(Y|UP = 1) - \mathbb{E}(Y|UP = 0)$ 



### **Difference-in-differences**

 $Y = \beta_0 + \beta_1 UP + \beta_2 IQ + {\pmb\beta}_3 UP \times IQ + \beta_4 {\bf X} + \varepsilon$ 

#### Parallel trends assumption

Selection bias constant across intelligence  $Y^0$  potential outcome when parents stay employed  $Y^1$  potential outcome when parents are unemployed

$$\frac{Cov(Y^0,IQ|UP=1)}{Var(IQ|UP=1)} = \frac{Cov(Y^0,IQ|UP=0)}{Var(IQ|UP=0)}$$

#### **Causal interpretation**

Change in causal effect of UP as IQ increases

$$\beta_3 = \frac{\partial \mathbb{E}(Y^1 - Y^0 | IQ, UP = 1)}{\partial IQ}$$

#### Validity

- Support parallel trends using observed  $Y^0$
- Causal interpretation with IQ as outcome

$$\beta_3 = \frac{\partial \mathbb{E}(Y^1 - Y^0 | IQ^1, UP = 1)}{\partial IQ^1}$$

- Attenuation bias due to measurement error in IQ
- Robustness checks:
  - cohorts born before 1981 (less recall bias)
  - only white British
  - separate by UK country
  - replication in the BCS70

#### Results

• Parent unemp is more harmful for education of children with higher IQ

|                          | Dependent variables                     |                                                       |                                         |  |  |
|--------------------------|-----------------------------------------|-------------------------------------------------------|-----------------------------------------|--|--|
|                          | Post-16 school                          | Degree                                                | Uni degree                              |  |  |
| Parent unemp             | -0.085***<br>(0.013)                    | -0.039***<br>(0.012)                                  | -0.028**<br>(0.012)                     |  |  |
| IQ                       | $0.137^{***}$<br>(0.004)                | $\begin{array}{c} 0.131^{***} \\ (0.003) \end{array}$ | $0.095^{***}$<br>(0.006)                |  |  |
| Parent unemp $\times$ IQ | <b>-0.041</b> <sup>†††</sup><br>(0.011) | <b>-0.036</b> <sup>†††</sup><br>(0.010)               | <b>-0.033</b> <sup>†††</sup><br>(0.010) |  |  |
| Obs.                     | 20,202                                  | 20,202                                                | 20,202                                  |  |  |

 $^{\dagger}{\rm q}$  < 0.1;  $^{\dagger\dagger}{\rm q}$  < 0.05;  $^{\dagger\dagger\dagger}{\rm q}$  < 0.01 based on FDR q-values

\*p < 0.1; \*\*p < 0.05; \*\*\*p < 0.01 based on conventional p-values

- Higher IQ mitigates the effect of parent unemp on labour supply and earnings
- Start at lower-paying jobs and switch to better-paying over time

Employer-learning theory (Farber and Gibbons 1996) Productivity-enhancing role of education (Aryal, Bhuller, and Lange 2022)

• Wages continue to suffer from foregone earnings

|                          |                                        | Dependent variables                     |                                                          |                                                                        |                          |                                        |  |
|--------------------------|----------------------------------------|-----------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|--------------------------|----------------------------------------|--|
|                          | Work                                   | $\%\Delta$ earnings                     | $\%\Delta$ hourly wage                                   | Hours                                                                  | First job rank           | Current job rank                       |  |
| Parent unemp             | -0.063***<br>(0.012)                   | -24.978***<br>(3.890)                   | -12.333***<br>(1.010)                                    | $-2.787^{***}$<br>(0.489)                                              | -0.041***<br>(0.012)     | $-1.049^{***}$<br>(0.204)              |  |
| IQ                       | $0.053^{***}$<br>(0.004)               | $30.032^{***}$<br>(1.302)               | $ \begin{array}{c} 18.392^{***} \\ (0.357) \end{array} $ | $1.896^{***}$<br>(0.143)                                               | $0.030^{***}$<br>(0.003) | $0.888^{***}$<br>(0.060)               |  |
| Parent unemp $\times$ IQ | <b>0.047</b> <sup>†††</sup><br>(0.012) | <b>13.258</b> <sup>†††</sup><br>(4.085) | <b>-5.371</b> <sup>†††</sup><br>(1.061)                  | $\begin{array}{c} 1.560^{\dagger\dagger\dagger}\\ (0.439) \end{array}$ | <b>0.004</b><br>(0.011)  | <b>0.881</b> <sup>†††</sup><br>(0.196) |  |
| Obs.                     | 20,202                                 | 20,202                                  | 15,589                                                   | 20,202                                                                 | 16,374                   | 20,201                                 |  |

 $^{\dagger}\mathrm{q}<0.1;\,^{\dagger\dagger}\mathrm{q}<0.05;\,^{\dagger\dagger\dagger}\mathrm{q}<0.01$  based on FDR q-values

\*p < 0.1; \*\*p < 0.05; \*\*\*p < 0.01 based on conventional p-values

#### Conclusions

- Higher IQ mitigates the effects of parental unemployment on labour supply and earnings
- Higher IQ exacerbates the losses in education and wages due to parental unemployment
- The initial loss in education and sustained penalty on wages suggests room for policy

## References

Aryal, Gaurab, Manudeep Bhuller, and Fabian Lange. 2022. "Signaling and Employer Learning with Instruments." American Economic Review 112 (5): 1669–1702. https://doi.org/10.1257/aer.20200146.

- Cunha, Flavio, and James Heckman. 2007. "The Technology of Skill Formation." American Economic Review 97 (2): 31–47.
- Farber, Henry S., and Robert Gibbons. 1996. "Learning and Wage Dynamics." The Quarterly Journal of Economics 111 (4): 1007–47. https://doi.org/10.2307/2946706.

#### Dynamic complementarity of human capital investments (Cunha and Heckman 2007)