Does intelligence shield children from the effects of parental unemployment?

Nurfatima Jandarova

Center of Excellence in Tax Systems Research, Tampere University
October 21, 2023
64th Annual Conference of the Italian Economic Association

Motivation

Parental job loss has negative impact on children's outcomes

- education Coelli (2011); Rege, Telle, and Votruba (2011)
- earnings and employment Oreopoulos, Page, and Stevens (2008)
- personality and well-being Angelini, Bertoni, and Corazzini (2018); Brand and Thomas (2014)

Potential mechanisms

- loss of income Coelli (2011); Oreopoulos, Page, and Stevens (2008)
- psychological distress Rege, Telle, and Votruba (2011)
- change in preferences Taylor and Rampino (2014)

Different interactions with cognitive skills of children

This paper

Research questions

- How parental unemployment effects vary with intelligence of children
- What do the interactions imply for the mechanisms

Overview

- UK largest household survey
- Parental unemployment at age 14
- Interaction with $I Q$ score of respondents
- Causal interpretation in difference-in-differences framework

Preview of results

- Higher IQ worsens the effect of parental unemployment on education
- Most of the losses among children of less-educated parents
- Dynamic complementary of skills (Cunha and Heckman 2007)
- Higher IQ mitigates some of the effects later in the labour market
- More stable and prestigious jobs; higher earnings
- Wage penalty remains
- Employer-learning theory (Farber and Gibbons 1996)
- Support income loss channel

Data

Understanding Society (UKHLS)

Cross-sectional: wave 3 (2011-13)

- Main variables:
- six cognitive test results
- employment status of parents when respondents were 14

```
Aggregate Detailed
```

- Education: post-16 school, tertiary degree, years of education
- Labour market: empl status, earnings, hours worked, hourly wages, job ranking

Difference-in-differences

Difference-in-differences

$$
Y_{i}=\beta_{0}+\beta_{1} U P_{i}+\beta_{2} I Q_{i}+\beta_{3} U P_{i} \times I Q_{i}+\beta_{4} \mathbf{X}_{i}+\beta_{5} \mathbf{P}_{i}+v_{i}
$$

$Y_{i} \quad$ outcome
$U P_{i} \quad 1$ if parent unemployed when child was 14
$I Q_{i} \quad$ child's intelligence score
$\mathbf{X}_{i} \quad$ child's pre-determined characteristics (gender, birth year \& country, ethnicity, immigrant)
$\mathbf{P}_{i} \quad$ parents' pre-determined characteristics (highest qual, country of birth)

Causal interpretation

Potential outcomes: Y^{0} when parents are employed; Y^{1} when parents are unemployed
Parallel trends: constant selection bias across intelligence

$$
\frac{\operatorname{Cov}\left(Y^{0}, I Q \mid U P=1\right)}{\operatorname{Var}(I Q \mid U P=1)}-\frac{\operatorname{Cov}\left(Y^{0}, I Q \mid U P=0\right)}{\operatorname{Var}(I Q \mid U P=0)}=0
$$

$$
\beta_{3}=\frac{\partial}{\partial I Q} \mathbb{E}\left(Y^{1}-Y^{0} \mid U P=1, I Q\right)
$$

How intelligence chanages the effect of parental unemployment

Results

Education

	Dependent variables		
	Age left school	Post-16 school	Degree
Parent unemp	$-0.167^{* * *}$	$-0.081^{* * *}$	$-0.039^{* * *}$
IQ	(0.029)	(0.014)	(0.013)
	$0.301^{* * *}$	$0.138^{* * *}$	$0.131^{* * *}$
Parent unemp \times IQ	(0.008)	(0.004)	(0.004)
	$-0.066^{\dagger \dagger}$	$-0.035^{\dagger \dagger \dagger}$	$-0.036^{\dagger \dagger \dagger}$
Obs.	(0.025)	(0.012)	(0.011)
Outcome mean	20,293	20,307	20,307
Outcome sd	16.62	0.37	0.27

${ }^{\dagger} q<0.1 ;{ }^{\dagger \dagger} q<0.05 ;{ }^{\dagger \dagger \dagger} q<0.01$ based on false discovery rate q -values (Benjamini and Hochberg, 1995)
${ }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p<0.01$ based on conventional p-values

Human capital investments

Dynamic complementarity (Cunha and Heckman 2007)
Loss of HC investments has larger effect on high-skilled children
Intergenerational transmission of earnings (Mulligan 1997)
Only poor households $\downarrow \mathrm{HC}$ investments in response to income shocks

- Strongest effects among individuals with less-educated parents

Labour market

	Dependent variables			
	Work	$\% \Delta$ earnings	$\% \Delta$ hourly wage	Hours
Parent unemp	$-0.061^{* * *}$	$-0.279^{* * *}$	$-0.111^{* * *}$	$-2.752^{* * *}$
IQ	(0.013)	(0.045)	(0.027)	(0.520)
	$0.052^{* * *}$	$0.296^{* * *}$	$0.161^{* * *}$	$1.870^{* * *}$
Parent unemp \times IQ	(0.004)	(0.014)	(0.009)	(0.154)
	$0.048^{\dagger \dagger \dagger}$	$0.130^{\dagger \dagger \dagger}$	-0.051^{\dagger}	$1.552^{\dagger \dagger \dagger}$
Obs. 0.013$)$	(0.040)	(0.026)	(0.466)	
Outcome mean	20,307	20,307	15,643	20,307
Outcome sd	0.74	2.63	0.16	25.52

[^0]
Employer learning theory (Farber and Gibbons 1996)

- Initially, education is the only signal of worker ability
- Over time, receive additional signals about worker productivity

Testable implications

- No differential impact on first jobs Job rankings
- Remediation effect increasing with age Age profiles

Robustness checks

- Alternative parental unemployment measures
- Subsample born before 1981 (high match with aggregate unemployment rates)
- Broad measure including parental death and separation
- Unemployment vs long-term poverty:
- Sample composition

Table

- Replication in the British Cohort Study 1970 Table

Mechanisms of parental unemployment

Loss of human capital investments is key

Supporting evidence

- less heterogeneity by $I Q$ at younger ages (BCS70) Table
- father's unemployment is the main driver of results Table HH income
- psychological distress: little difference by children's gender Table

Conclusion

- New: how intelligence changes parental unemployment effects on children
- Higher IQ exacerbates costs on educational attainment
- born by children of less educated parents
- Higher IQ mitigates some labour-market outcomes later in life
- consistent with employer-learning theory (Farber and Gibbons 1996)
- Loss of human capital investments as the driving mechanism

Thank you!

Appendix

Intelligence score: principal component analysis

- 5 tests administered in wave 3 to all $16+$ respondents
- Use PC1 as the intelligence score (42.2% of variation)

Test	Measure	PC1 loading
Immediate word recall	Episodic memory	0.46
Delayed word recall	Episodic memory	0.45
Serial 7 subtraction	Working memory	0.32
Number series	Fluid reasoning	0.40
Verbal fluency	Categoric fluency	0.36
Numeric ability	Numerical knowledge	0.44

- Standardize to mean 0 and sd 1 by sex and 5-year birth cohorts

Intelligence score: graph

Average intelligence score

University admission in the UK

GCE/SCE as main entry qualification

Under age 20

Data sourceHigher Education Statistics Agency (1994-) \square Universities' Statistical Record (1972-1993)

Parental unemployment (aggregate)

\longrightarrow Parental unemployment
UK male unemployment rate, aged 40-49
UK unemployment rate

Recession

Parental unemployment (detailed)

Unemployment benefits

Net household income during unemployment

[^1]
Relative stability of intelligence score (BCS70)

Parental unemployment and gap in outcomes

Parallel trends

Potential outcomes

- Y^{0} when parents stay employed
- Y^{1} when parents are unemployed

Parental unemployment

- $U P=0$ stay employed
- $U P=1$ unemployed

Parallel trends requires

$$
\frac{\operatorname{Cov}\left(Y^{0}, I Q \mid U P=1\right)}{\operatorname{Var}(I Q \mid U P=1)}-\frac{\operatorname{Cov}\left(Y^{0}, I Q \mid U P=0\right)}{\operatorname{Var}(I Q \mid U P=0)}=0
$$

Selection bias flat across intelligence score of children

Parallel trends (graphical)

Potential outcomes

- Y^{0} when parents stay employed
- Y^{1} when parents are unemployed
Parental unemployment
- $U P=0$ stay employed
- $U P=1$ unemployed

Characteristics at birth in the UKHLS

Dependent variable	Regressors			Obs.	Mean outcome
	Parent unemp	IQ	Parent unemp \times IQ		
Father's mother born UK	-0.007	-0.002	0.002	20,202	0.759
	(0.007)	(0.002)	(0.006)		
Father's father born UK	-0.011	0.002	0.006	20,202	0.750
	(0.007)	(0.002)	(0.006)		
Mother's mother born UK	-0.001	0.001	-0.003	20,202	0.773
	(0.006)	(0.002)	(0.006)		
Mother's father born UK	-0.009	0.005***	0.000	20,202	0.762
	(0.007)	(0.002)	(0.007)		
Has siblings	0.004	-0.000	-0.006	20,202	0.900
	(0.009)	(0.003)	(0.008)		
White british father	0.010	-0.000	-0.008	20,202	0.674
	(0.010)	(0.003)	(0.009)		
White british mother	0.015	-0.003	-0.005	20,202	0.680
	(0.010)	(0.003)	(0.010)		

Characteristics at birth in the BCS70

Dependent variable	Regressors			Obs.	Mean outcome
	Parent unemp	IQ	Parent unemp $\times I Q$		
Parity	$0.444^{* * *}$	$-0.069^{* * *}$	0.024	5,063	1.50
	(0.094)	(0.022)	(0.085)		
Lactation attempted	-0.049**	0.031***	-0.026	5,063	0.32
	(0.024)	(0.008)	(0.024)		
Birthweight, g	-60.310*	57.119***	-10.030	5,059	3,284
	(35.011)	(9.956)	(30.745)		
Age of mother	0.575*	0.378***	0.380	5,063	26.18
	(0.325)	(0.082)	(0.307)		
Age of father	$1.807^{* * *}$	0.440***	0.760	4,405	29.02
	(0.424)	(0.102)	(0.375)		
Height of mother, cm	$-1.131^{* * *}$	0.346***	-0.033	5,029	161
	(0.369)	(0.109)	(0.326)		
Age of mother at first birth	$-0.621^{* * *}$	0.485***	0.013	5,043	21.69
	(0.217)	(0.061)	(0.204)		

Parallel trends and intergenerational persistence of intelligence

Parallel trends condition

Intergenerational process on IQ

$$
\begin{aligned}
I Q_{\mathrm{child}} & =\rho\left(I Q_{\mathrm{par}}\right) I Q_{\mathrm{par}}+\nu \\
\rho\left(I Q_{\mathrm{par}}\right) & =\rho_{0}+\rho_{1} I Q_{\mathrm{par}}
\end{aligned}
$$

Parallel trends condition

$$
\begin{aligned}
& \frac{\operatorname{Cov}\left(I Q_{P}, I Q_{C} \mid U P=1\right)}{\operatorname{Var}\left(I Q_{C} \mid U P=1\right)}- \\
& \quad-\frac{\operatorname{Cov}\left(I Q_{P}, I Q_{C} \mid U P=0\right)}{\operatorname{Var}\left(I Q_{C} \mid U P=0\right)}=0
\end{aligned}
$$

Cognitive test results at age 5 in the BCS70

	Regressors				
Dependent variable	Parent unemp	IQ	Parent unemp \times IQ	Obs.	Mean outcome
Composite score (PC1)	-0.123	$0.267^{* * *}$	0.020	2,134	-0.05
Reading score	(0.088)	(0.037)	(0.072)		
	-0.523	$1.448^{* * *}$	-0.898	2,215	3.10
English picture vocab. score	(0.353)	(0.17)	(0.359)		
	$-0.349^{* * *}$	$0.375^{* * *}$	0.012	4,587	-0.34
Copying designs score	(0.091)	(0.025)	(0.084)		
	-0.052	$0.393^{* * *}$	0.089	4,587	-0.10
Draw-a-man score	(0.062)	(0.017)	(0.056)		
	-0.109	$0.288^{* * *}$	0.055	4,587	-0.17
Complete-a-profile score	(0.077)	(0.02)	(0.078)		
	-0.330	$0.480^{* * *}$	0.016	4,431	6.85

Cognitive test results at age 16 in the BCS70

Dependent variable	Regressors			Obs.	Mean outcome
	Parent unemp	IQ	Parent unemp $\times I Q$		
Composite score (PC1)	$\begin{aligned} & -0.178^{*} \\ & (0.1) \end{aligned}$	$\begin{aligned} & 0.579^{* * *} \\ & (0.026) \end{aligned}$	$\begin{aligned} & 0.129 \\ & (0.103) \end{aligned}$	1,297	-0.07
Reading score	$\begin{aligned} & -2.791^{* *} \\ & (1.368) \end{aligned}$	$\begin{aligned} & 7.387^{* * *} \\ & (0.351) \end{aligned}$	$\begin{aligned} & 2.646 \\ & (1.459) \end{aligned}$	1,377	53.58
Spelling score	$\begin{aligned} & -2.178 \\ & (4.753) \end{aligned}$	$\begin{aligned} & 14.864^{* * *} \\ & (1.365) \end{aligned}$	$\begin{aligned} & 2.697 \\ & (4.205) \end{aligned}$	5,063	74.11
Vocabulary score	$\begin{aligned} & -0.872 \\ & (1.284) \end{aligned}$	$\begin{aligned} & 6.146^{* * *} \\ & (0.381) \end{aligned}$	$\begin{aligned} & -0.584 \\ & (1.162) \end{aligned}$	5,063	19.64
Math score	$\begin{aligned} & -0.185 \\ & (1.099) \end{aligned}$	$\begin{aligned} & 6.102^{* * *} \\ & (0.287) \end{aligned}$	$\begin{aligned} & 0.946 \\ & (1.175) \end{aligned}$	1,643	36.14
Complete-matrix score	$\begin{aligned} & -0.285^{*} \\ & (0.172) \end{aligned}$	$\begin{aligned} & 0.575^{* * *} \\ & (0.048) \end{aligned}$	$\begin{aligned} & 0.034 \\ & (0.212) \end{aligned}$	1,412	8.81

Intelligence as outcome

Parallel trend assumption

$$
\frac{\operatorname{Cov}\left(Y^{0}, I Q^{1} \mid U P=1\right)}{\operatorname{Var}\left(I Q^{1} \mid U P=1\right)}-\frac{\operatorname{Cov}\left(Y^{0}, I Q^{0} \mid U P=0\right)}{\operatorname{Var}\left(I Q^{0} \mid U P=0\right)}=0
$$

Regression interpretation

$$
\beta_{3}=\frac{\partial}{\partial I Q^{1}} \mathbb{E}\left(Y^{1}-Y^{0} \mid U P=1, I Q^{1}\right)
$$

Limitation: $Y^{1}-Y^{0}$ may interact differently with $I Q^{0}$

Effect on education by parental qualifications

	Post-16 school	Degree	Age left school
Parent unemp \times IQ	0.066	0.025	0.059
	(0.042)	(0.048)	(0.077)
Qual missing \times Parent unemp \times IQ	$-0.125^{\dagger \dagger}$	-0.103^{\dagger}	-0.154
	(0.049)	(0.052)	(0.098)
No school \times Parent unemp \times IQ	-0.146	$-0.267^{\dagger \dagger}$	-0.342
	(0.106)	(0.106)	(0.236)
Some school \times Parent unemp \times IQ	-0.100^{\dagger}	-0.052	-0.117
	(0.045)	(0.050)	(0.083)
Obs.	20,307	20,307	20,293
Outcome mean	0.37	0.27	16.62
Outcome sd	0.48	0.44	1.06
${ }^{\dagger} q<0.1 ;{ }^{\dagger \dagger} q<0.05 ;{ }^{\dagger \dagger \dagger} q<0.01$ based on false discovery rate q-values (Benjamini and Hochberg, 1995)			
${ }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p<0.01$ based on conventional p-values			

Heckman two-step: labour-market results

	Dependent variables			
	IHS earnings	IHS hourly	Hours	IHS current job
		wage		rank
Parent unemp	$-0.270^{* * *}$	$-0.037^{* * *}$	$-1.539^{* * *}$	$-0.086^{* * *}$
IQ	(0.064)	(0.009)	(0.431)	(0.016)
	$0.290^{* * *}$	$0.046^{* * *}$	$0.526^{* *}$	$0.129^{* * *}$
Parent unemp \times IQ	(0.036)	(0.005)	(0.252)	(0.008)
	$0.122^{* *}$	0.010	0.697^{*}	0.026^{*}
Obs.	(0.061)	(0.009)	(0.410)	(0.015)

${ }^{*} \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$

Job rankings

	Dependent variables	
	IHS first job rank	IHS current job rank
Parent unemp	$-0.039^{* * *}$	$-0.234^{* * *}$
IQ	(0.013)	(0.046)
	$0.029^{* * *}$	$0.248^{* * *}$
Parent unemp \times IQ	(0.004)	(0.013)
	0.005	$0.159^{\dagger \dagger \dagger}$
Obs.	(0.012)	(0.043)
Outcome mean	16,400	20,307
Outcome sd	2.84	2.72
${ }^{\dagger} q<0.1 ;{ }^{\dagger \dagger} q<0.05 ;{ }^{\dagger \dagger \dagger} q<0.01$ based on FDR q-values	1.54	
${ }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p<0.01$ based on conventional p-values		

Age profiles

	Dependent variable			
	Work	IHS earnings	IHS hourly wage	Hours
Ages 16-20	0.020	-0.469	$-0.231^{* *}$	-0.534
Ages 21-25	(0.049)	(0.415)	(0.112)	(1.649)
	0.017	-0.289	$-0.151^{* *}$	-0.551
Ages 26-30	(0.036)	(0.334)	(0.066)	$-0.176)$
	0.018	-0.404	(0.064)	(0.864)
Ages 31-35	(0.025)	(0.277)	-0.581	
	0.009	-0.308	$(0.085$	(0.653)
Ages 36-40	(0.018)	(0.247)	-0.068	(0.046)
Ages 41-45		-0.275	-0.052	(0.036)
Ages 56-60	(0.219)	0.002		
		0.064	(0.050)	0.198
Ages 61-65	0.009	-0.004	-0.055	(0.819)
	(0.021)	(0.178)	(0.070)	$(1.2812$
Obs.	0.015	0.070	134,279	175,124

Robustness: alternative unemployment (born before 1981)

	Post-16 school	Degree	Work	$\% \Delta$ earnings	$\% \Delta$ hourly wage	Hours
Parent unemp	$-0.058^{* * *}$	-0.007	$-0.042^{* * *}$	$-0.213^{* * *}$	$-0.114^{* * *}$	$-1.949^{* * *}$
IQ	(0.017)	(0.016)	(0.015)	(0.052)	(0.032)	(0.605)
	$0.137^{* * *}$	$0.137^{* * *}$	$0.059^{* * *}$	$0.326^{* * *}$	$0.172^{* * *}$	$2.021^{* * *}$
Parent unemp \times IQ	(0.004)	(0.004)	(0.004)	(0.015)	(0.009)	(0.173)
	-0.029^{\dagger}	-0.017	$0.049^{\dagger \dagger \dagger}$	$0.138^{\dagger \dagger}$	-0.039	$1.383^{\dagger \dagger}$
Obs.	(0.015)	(0.014)	(0.015)	(0.050)	(0.031)	(0.591)
Outcome mean	15,907	15,907	15,907	15,907	12,661	15,907
Outcome sd	0.36	0.28	0.80	2.85	0.17	27.35
${ }^{\dagger} q<0.1 ;{ }^{\dagger \dagger} q<0.05 ;{ }^{\dagger \dagger \dagger} q<0.01$ based on FDR q-values			0.16	17.19		
${ }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p<0.01$ based on conventional p-values						

Robustness: alternative unemployment (incl. death and separation)

	Post-16 school	Degree	Work	$\% \Delta$ earnings	$\% \Delta$ hourly wage	Hours
Parent unemp	$-0.082^{* * *}$	$-0.034^{* * *}$	$-0.048^{* * *}$	$-0.233^{* * *}$	$-0.107^{* * *}$	$-2.182^{* * *}$
IQ	(0.012)	(0.011)	(0.011)	(0.037)	(0.023)	(0.413)
	$0.140^{* * *}$	$0.132^{* * *}$	$0.051^{* * *}$	$0.291^{* * *}$	$0.161^{* * *}$	$1.830^{* * *}$
Parent unemp \times IQ	(0.004)	(0.004)	(0.004)	(0.014)	(0.009)	(0.156)
	$-0.043^{\dagger \dagger \dagger}$	$-0.033^{\dagger \dagger \dagger}$	$0.039^{\dagger \dagger \dagger}$	$0.124^{\dagger \dagger \dagger}$	-0.030	$1.406^{\dagger \dagger \dagger}$
Obs.	(0.010)	(0.009)	(0.011)	(0.034)	(0.020)	(0.388)
Outcome mean	20,329	20,329	20,329	20,329	15,655	20,329
Outcome sd	0.37	0.27	0.74	2.63	0.16	25.52

${ }^{\dagger} q<0.1 ;{ }^{\dagger \dagger} q<0.05 ;{ }^{\dagger \dagger \dagger} q<0.01$ based on FDR q-values
${ }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p<0.01$ based on conventional p-values

Robustness: neighbourhood characteristics at age 15

	Inner city
Parent unemp	$0.047^{* * *}$
	(0.011)
IQ	$-0.015^{* * *}$
	(0.003)
Parent unemp \times IQ	0.007
	(0.010)
Obs.	20,303
$* \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$	

Robustness: subgroup analysis

	Post-16 school	Degree	Work	$\% \Delta$ earnings	$\% \Delta$ hourly wage	Hours
White British						
Parent unemp $\times 1 \mathrm{Q}$	$\begin{gathered} -0.035^{\dagger \dagger} \\ (0.013) \end{gathered}$	$\begin{gathered} -0.039 \dagger \dagger \dagger \\ (0.011) \end{gathered}$	$\begin{gathered} 0.052^{\dagger \dagger \dagger} \\ (0.014) \end{gathered}$	$\begin{gathered} 0.145^{\dagger \dagger \dagger} \\ (0.044) \end{gathered}$	$\begin{gathered} -0.050^{\dagger} \\ (0.028) \end{gathered}$	$\begin{gathered} 1.703^{\dagger \dagger \dagger} \\ (0.497) \end{gathered}$
Obs.	18,176	18,176	18,176	18,176	14,209	18,176
Born in England						
Parent unemp $\times 1 \mathrm{~L}$	$\begin{gathered} -0.034 \dagger \dagger \\ (0.014) \end{gathered}$	$\begin{gathered} -0.035^{\dagger \dagger} \\ (0.013) \end{gathered}$	$\begin{gathered} 0.055^{\dagger \dagger \dagger} \\ (0.015) \end{gathered}$	$\begin{gathered} 0.148^{\dagger \dagger \dagger} \\ (0.045) \end{gathered}$	$\begin{aligned} & -0.045 \\ & (0.030) \end{aligned}$	$\begin{gathered} 1.634 \dagger \dagger \dagger \\ (0.547) \end{gathered}$
Obs.	15,222	15,222	15,222	15,222	11,742	15,222
Born in Wales						
Parent unemp $\times 1$ Q	$\begin{aligned} & -0.045 \\ & (0.053) \end{aligned}$	$\begin{aligned} & -0.060 \\ & (0.042) \end{aligned}$	$\begin{gathered} 0.031 \\ (0.070) \end{gathered}$	$\begin{gathered} 0.171 \\ (0.148) \end{gathered}$	$\begin{aligned} & -0.134 \\ & (0.078) \end{aligned}$	$\begin{gathered} 2.670 \\ (2.032) \end{gathered}$
Obs.	1,337	1,337	1,337	1,337	1,003	1,337
Born in Scotland						
Parent unemp $\times 1 \mathrm{~L}$	$\begin{gathered} -0.012 \\ (0.063) \end{gathered}$	$\begin{gathered} 0.001 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.044 \\ (0.060) \end{gathered}$	$\begin{gathered} 0.098 \\ (0.139) \end{gathered}$	$\begin{gathered} -0.181^{\dagger \dagger} \\ (0.068) \end{gathered}$	$\begin{gathered} 2.079 \\ (2.125) \end{gathered}$
Obs.	1,927	1,927	1,927	1,926	1,502	1,927

Robustness: BCS70

Robustness: BCS70

	Post-16 school	Degree	Work	$\% \Delta$ earnings	\% Δ current job rank
UKHLS sample born in 1970					
Parent unemp $\times 1 Q$	$\begin{aligned} & -0.051 \\ & (0.026) \end{aligned}$	$\begin{aligned} & -0.004 \\ & (0.014) \end{aligned}$	$\begin{gathered} 0.106^{\dagger \dagger \dagger} \\ (0.016) \end{gathered}$	$\begin{gathered} 0.197 \\ (0.222) \end{gathered}$	$\begin{gathered} 0.367 \\ (0.194) \end{gathered}$
Obs.	578	578	578	578	578
BCS70 at age 34					
Parent unemp $\times 1$ Q		$\begin{aligned} & -0.039^{\dagger} \\ & (0.018) \end{aligned}$	$\begin{aligned} & 0.087^{\dagger \dagger} \\ & (0.028) \end{aligned}$	$\begin{gathered} 0.210 \\ (0.170) \end{gathered}$	$\begin{gathered} 0.003 \\ (0.055) \end{gathered}$
Obs.		5,063	3,757	1,375	2,118
BCS70 at age 38					
Parent unemp $\times 1 Q$		-0.005	0.023	-0.065	0.234
		(0.026)	(0.028)	(0.153)	(0.209)
Obs.		3,555	3,542	3,148	5,046
$\begin{aligned} & { }^{\dagger} q<0.1 ;{ }^{\dagger \dagger} q<0.05 ;{ }^{\dagger \dagger} q<0 \\ & { }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p< \end{aligned}$	based on FDR based on con	values	values		

Effect on degree by age at exposure (BCS70)

Parental unemployment recorded

	at birth	at age 10	at age 16
Parent unemp	0.004	-0.033^{*}	-0.048^{*}
	(0.025)	(0.019)	(0.025)
IQ	$0.116^{* * *}$	$0.126^{* * *}$	$0.137^{* * *}$
	(0.005)	(0.006)	(0.008)
Parent unemp \times IQ	-0.001	$-0.069^{* * *}$	$-0.085^{* * *}$
	(0.023)	(0.020)	(0.026)
Obs.	5,707	5,443	3,463
$* \mathrm{p}<0.1,{ }^{* *} \mathrm{p}<0.05,{ }^{* * *} \mathrm{p}<0.01$			

Distribution of household income

General Household Survey 1972

General Household Survey 1980

Effect of parental unemployment by parent's gender

	Dependent variables					
	Degree	Work	$\% \Delta$ earnings	$\% \Delta$ hourly wage	IHS first job rank	IHS current job rank
IQ	$\begin{gathered} 0.133^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.046^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} 0.279^{* * *} \\ (0.016) \end{gathered}$	$\begin{gathered} 0.157^{* * *} \\ (0.010) \end{gathered}$	$\begin{gathered} 0.033^{* * *} \\ (0.004) \end{gathered}$	$\begin{gathered} 0.228^{* * *} \\ (0.016) \end{gathered}$
Father unemp	$\begin{gathered} -0.037^{* *} \\ (0.016) \end{gathered}$	$\begin{gathered} -0.055^{* * *} \\ (0.016) \end{gathered}$	$\begin{gathered} -0.246^{* * *} \\ (0.054) \end{gathered}$	$\begin{gathered} -0.123^{* * *} \\ (0.024) \end{gathered}$	$\begin{aligned} & -0.028^{*} \\ & (0.015) \end{aligned}$	$\begin{gathered} -0.215^{* * *} \\ (0.056) \end{gathered}$
Father unemp $\times 1 Q$	$\begin{gathered} -0.032 \\ (0.014) \end{gathered}$	$\begin{gathered} 0.039 \\ (0.017) \end{gathered}$	$\begin{gathered} 0.091 \\ (0.051) \end{gathered}$	$\begin{aligned} & -0.081^{\dagger} \\ & (0.029) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.014) \end{gathered}$	$\begin{aligned} & 0.160^{\dagger} \\ & (0.054) \end{aligned}$
Mother unemp	$\begin{gathered} 0.010 \\ (0.008) \end{gathered}$	$\begin{gathered} -0.034^{* * *} \\ (0.008) \end{gathered}$	$\begin{gathered} -0.169^{* * *} \\ (0.028) \end{gathered}$	$\begin{aligned} & -0.015 \\ & (0.018) \end{aligned}$	$\begin{gathered} -0.021^{* * *} \\ (0.007) \end{gathered}$	$\begin{gathered} -0.122^{* * *} \\ (0.027) \end{gathered}$
Mother unemp $\times 1 \mathrm{Q}$	$\begin{aligned} & -0.001 \\ & (0.007) \end{aligned}$	$\begin{gathered} 0.016 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.028) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.018) \end{gathered}$	$\begin{aligned} & -0.010 \\ & (0.007) \end{aligned}$	$\begin{gathered} 0.036 \\ (0.027) \end{gathered}$
Obs.	18,496	18,496	18,496	14,381	15,066	18,496

[^2]
Effect of parental unemployment by children's gender

	Dependent variables					
	Degree	Work	$\% \Delta$ earnings	$\% \Delta$ hourly wage	IHS first job rank	IHS current job rank
Parent unemp	$\begin{aligned} & -0.033^{*} \\ & (0.020) \end{aligned}$	$\begin{gathered} -0.045^{* *} \\ (0.019) \end{gathered}$	$\begin{gathered} -0.270^{* * *} \\ (0.067) \end{gathered}$	$\begin{gathered} -0.135^{* * *} \\ (0.031) \end{gathered}$	$\begin{aligned} & -0.034^{*} \\ & (0.020) \end{aligned}$	$\begin{gathered} -0.194^{* * *} \\ (0.067) \end{gathered}$
IQ	$\begin{gathered} 0.131^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} 0.052^{* * *} \\ (0.006) \end{gathered}$	$\begin{gathered} 0.299^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} 0.172^{* * *} \\ (0.009) \end{gathered}$	$\begin{aligned} & 0.014^{* *} \\ & (0.005) \end{aligned}$	$\begin{gathered} 0.235^{* * *} \\ (0.019) \end{gathered}$
IQ \times Female	$\begin{gathered} 0.000 \\ (0.006) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.008) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.026) \end{aligned}$	$\begin{aligned} & -0.023 \\ & (0.018) \end{aligned}$	$\begin{gathered} 0.030^{* * *} \\ (0.007) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.025) \end{gathered}$
Parent unemp $\times 1 \mathrm{Q}$	$\begin{gathered} -0.034 \\ (0.017) \end{gathered}$	$\begin{gathered} 0.027 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.080 \\ (0.067) \end{gathered}$	$\begin{aligned} & -0.066 \\ & (0.034) \end{aligned}$	$\begin{gathered} 0.001 \\ (0.018) \end{gathered}$	$\begin{gathered} 0.091 \\ (0.068) \end{gathered}$
Parent unemp $\times 1 \mathrm{~L} \times$ Female	$\begin{aligned} & -0.004 \\ & (0.021) \end{aligned}$	$\begin{gathered} 0.037 \\ (0.026) \end{gathered}$	$\begin{gathered} 0.093 \\ (0.086) \end{gathered}$	$\begin{gathered} 0.032 \\ (0.051) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.024) \end{gathered}$	$\begin{gathered} 0.120 \\ (0.088) \end{gathered}$
Obs.	20,307	20,307	20,307	15,643	16,400	20,307

[^3]
[^0]: ${ }^{\dagger} q<0.1 ;{ }^{\dagger \dagger} q<0.05 ;{ }^{\dagger \dagger \dagger} q<0.01$ based on FDR q-values
 ${ }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p<0.01$ based on conventional p -values

[^1]: - Single person with 2 children
 - - Couple with 2 children - partner is out of work
 - Couple with 2 children - partner's earnings: AW

[^2]: ${ }^{\dagger} q<0.1 ;{ }^{\dagger \dagger} q<0.05 ;{ }^{\dagger \dagger \dagger} q<0.01$ based on FDR q-values
 ${ }^{*} p<0.1 ;{ }^{* *} p<0.05 ;{ }^{* * *} p<0.01$ based on conventional p-values

[^3]: ${ }^{\dagger} q<0.1 ;{ }^{\dagger \dagger} q<0.05 ;{ }^{\dagger \dagger} q<0.01$ based on FDR q-values
 ${ }^{*} p<0.1$; ${ }^{* *} p<0.05$; *** $p<0.01$ based on conventional p-values

