Does intelligence shield children from the effects of parental unemployment?

Nurfatima Jandarova 87th Annual Meetings of the Midwest Economics Association April 1, 2023

University of Minnesota

Motivation

Parental job loss has negative impact on children's outcomes

- education Coelli (2011); Rege, Telle, and Votruba (2011)
- earnings and employment Oreopoulos, Page, and Stevens (2008)
- personality and well-being Angelini, Bertoni, and Corazzini (2018); Brand and Thomas (2014)

Potential mechanisms

- loss of income Coelli (2011); Oreopoulos, Page, and Stevens (2008)
- psychological distress Rege, Telle, and Votruba (2011)
- change in preferences Taylor and Rampino (2014)

Different interactions with cognitive skills of children

Motivation

Parental job loss has negative impact on children's outcomes

- education Coelli (2011); Rege, Telle, and Votruba (2011)
- earnings and employment Oreopoulos, Page, and Stevens (2008)
- personality and well-being Angelini, Bertoni, and Corazzini (2018); Brand and Thomas (2014)

Potential mechanisms

- loss of income Coelli (2011); Oreopoulos, Page, and Stevens (2008)
- psychological distress Rege, Telle, and Votruba (2011)
- change in preferences Taylor and Rampino (2014)

Different interactions with cognitive skills of children

Research question

How do these effects vary with intelligence?

This paper

- UK largest household survey
- Parental unemployment at age 14
- Interaction with IQ score of respondents
- Causal interpretation in difference-in-differences framework

Preview of results

- Higher IQ worsens the effect of parental unemployment on education
 - Most of the losses among children of less-educated parents
 - Dynamic complementary of skills (Cunha and Heckman 2007)
- Higher IQ mitigates some of the effects later in the labour market
 - More stable and prestigious jobs; higher earnings
 - Wage penalty remains
 - Employer-learning theory (Farber and Gibbons 1996)
- Support income loss channel
- Suggestive evidence that institutional environment matters

Data

Understanding Society (UKHLS)

Cross-sectional: wave 3 (2011-13)

- Main variables:
 - six cognitive test results
 - employment status of parents when respondents were 14
 - Aggregate Detailed
- Education: post-16 school, tertiary degree, university degree, years of schooling
- Labour market: empl status, earnings, hours worked, hourly wages, job ranking

Difference-in-differences

Difference-in-differences

$$Y_i = \beta_0 + \beta_1 U P_i + \beta_2 I Q_i + \frac{\beta_3}{2} U P_i \times I Q_i + \beta_4 \mathbf{X}_i + \beta_5 \mathbf{P}_i + v_i$$

 Y_i outcome $UP_i \qquad \text{1 if parent unemployed when child was 14}$ $IQ_i \qquad \text{child's intelligence score}$ $\mathbf{X}_i \qquad \text{child's pre-determined characteristics } \textit{(gender, birth year \& country, ethnicity, immigrant)}$ $\mathbf{P}_i \qquad \text{parents' pre-determined characteristics } \textit{(highest qual, country of birth)}$

Causal interpretation

Potential outcomes: Y^0 when parents are employed; Y^1 when parents are unemployed

Parallel trends: constant selection bias across intelligence Graph

$$\frac{\operatorname{Cov}(Y^0,IQ|UP=1)}{\operatorname{Var}(IQ|UP=1)} - \frac{\operatorname{Cov}(Y^0,IQ|UP=0)}{\operatorname{Var}(IQ|UP=0)} = 0$$

UKHLS birth BCS birth IQ persistence BCS age 5 BCS age 16 IQ as outcome

$$\beta_3 = \frac{\partial}{\partial IQ} \mathbb{E}(Y^1 - Y^0 | UP = 1, IQ)$$

How intelligence chanages the effect of parental unemployment

Results

Education

	Dependent variables					
	Age left school	Post-16 school	Degree	Uni degree		
Parent unemp	-0.174***	-0.085***	-0.039***	-0.028**		
	(0.023)	(0.013)	(0.012)	(0.012)		
IQ	0.288***	0.137***	0.131***	0.095***		
	(0.007)	(0.004)	(0.003)	(0.006)		
Parent unemp $ imes$ IQ	-0.096†††	-0.041 ^{†††}	-0.036†††	-0.033†††		
	(0.020)	(0.011)	(0.010)	(0.010)		
Obs.	20,202	20,202	20,202	20,202		

 $^{^{\}dagger}q{<}0.1;\,^{\dagger\dagger}q{<}0.05;\,^{\dagger\dagger\dagger}q{<}0.01$ based on FDR q-values

 $^{^*}p{<}0.1;$ $^{**}p{<}0.05;$ $^{***}p{<}0.01$ based on conventional p-values

Human capital investments

Dynamic complementarity (Cunha and Heckman 2007)

Loss of HC investments has larger effect on high-skilled children

Intergenerational transmission of earnings (Mulligan 1997)

Only poor households \(\psi \) HC investments in response to income shocks

Strongest effects among individuals with less-educated parents Table

Labour market

	Dependent variables					
	Work	$\%\Delta$ earnings	$\%\Delta$ hourly wage	Hours		
Parent unemp	-0.063***	-24.760***	-11.305***	-2.787***		
	(0.012)	(3.385)	(2.483)	(0.489)		
IQ	0.053***	29.807***	16.860***	1.896***		
	(0.004)	(1.303)	(0.879)	(0.143)		
Parent unemp \times IQ	0.047 ^{†††}	$9.717^{\dagger \dagger \dagger}$	-4.492	$1.560^{\dagger\dagger\dagger}$		
	(0.012)	(3.079)	(2.444)	(0.439)		
Obs.	20,202	20,202	15,589	20,202		

 $^{^{\}dagger}q{<}0.1;\,^{\dagger\dagger}q{<}0.05;\,^{\dagger\dagger\dagger}q{<}0.01$ based on FDR q-values

Heckman two-step

 $^{^*}p{<}0.1;~^{**}p{<}0.05;~^{***}p{<}0.01$ based on conventional p-values

Employer learning theory (Farber and Gibbons 1996)

- Initially, education is the main signal of worker ability Job rankings
- Over time, receive additional signals about worker productivity (Age profiles)

Conclusion

- New: how intelligence changes parental unemployment effects on children
- Higher IQ exacerbates costs on educational attainment
 - born by children of less educated parents
- Higher IQ mitigates some labour-market outcomes later in life
 - consistent with employer-learning theory (Farber and Gibbons 1996)
- Loss of human capital investments as the driving mechanism

Appendix

Potential mechanisms

Loss of human capital investments is main channel

Potential mechanisms

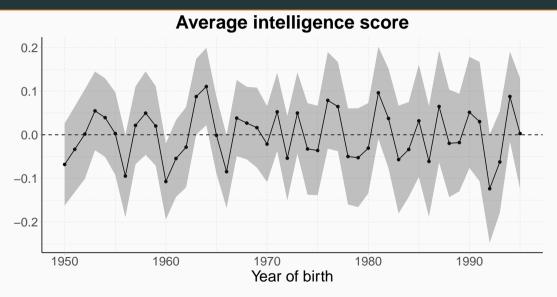
Loss of human capital investments is main channel

- Parents' gender: severity of income loss Table Benefits
- Children's gender: personality traits Table
- Institutional environment Table

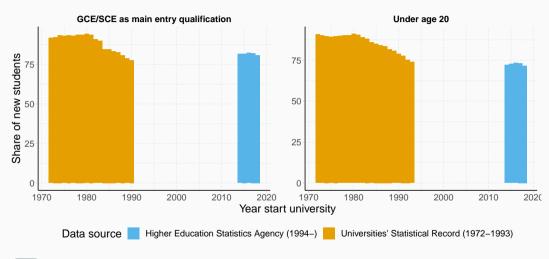
Robustness checks

- UKHLS subsamples Table
 - Cohorts born before 1981 Recall bias
 - Ethnically white British
 - Separate regressions by birth countries (England, Scotland, Wales and NI)
- Replication in the BCS70 Table

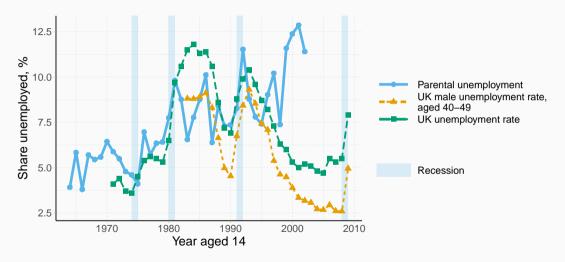
Intelligence score: principal component analysis


- 5 tests administered in wave 3 to all 16+ respondents
- Use PC1 as the intelligence score (42.2% of variation)

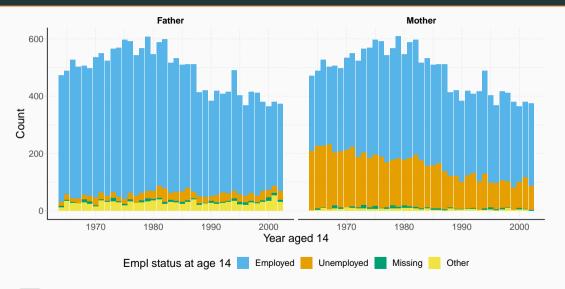
Test	Measure	PC1 loading
Immediate word recall	Episodic memory	0.46
Delayed word recall	Episodic memory	0.45
Serial 7 subtraction	Working memory	0.32
Number series	Fluid reasoning	0.40
Verbal fluency	Categoric fluency	0.36
Numeric ability	Numerical knowledge	0.44


• Standardize to mean 0 and sd 1 by sex and 5-year birth cohorts

Intelligence score: graph

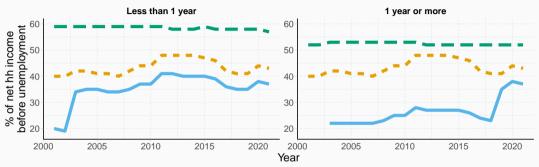


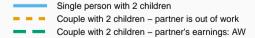
University admission in the UK



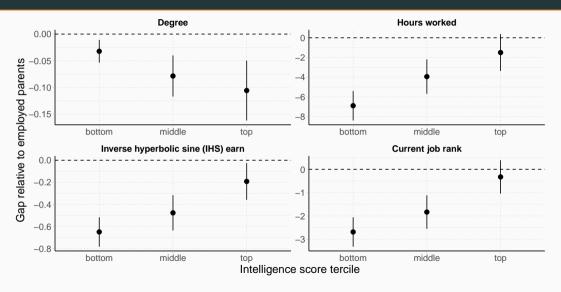
Parental unemployment (aggregate)




Parental unemployment (detailed)



Unemployment benefits


Source: OECD

Relative stability of intelligence score (BCS70)

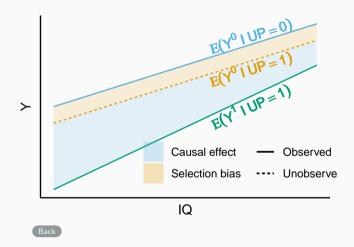
Parental unemployment and gap in outcomes

Parallel trends

Potential outcomes

- ullet Y^0 when parents stay employed
- ullet Y^1 when parents are unemployed

Parental unemployment


- UP = 0 stay employed
- UP = 1 unemployed

Parallel trends requires

$$\frac{\mathsf{Cov}(Y^0,IQ|UP=1)}{\mathsf{Var}(IQ|UP=1)} - \frac{\mathsf{Cov}(Y^0,IQ|UP=0)}{\mathsf{Var}(IQ|UP=0)} = 0$$

Selection bias flat across intelligence score of children

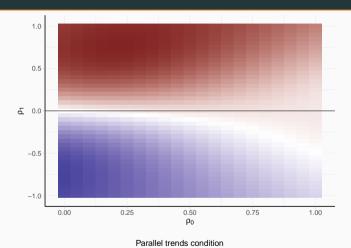
Parallel trends (graphical)

Potential outcomes

- Y⁰ when parents stay employed
- Y¹ when parents are unemployed

Parental unemployment

- UP = 0 stay employed
- lacksquare UP=1 unemployed


Characteristics at birth in the UKHLS

		Regressors				
Dependent variable	Parent unemp	IQ	Parent unemp \times IQ	Obs.	Mean outcome	
Father's mother born UK	20,202	-0.002	0.002	-0.007	0.759	
	(NA)	(0.002)	(0.006)	(0.007)	(NA)	
Father's father born UK	20,202	0.002	0.006	-0.011	0.750	
	(NA)	(0.002)	(0.006)	(0.007)	(NA)	
Mother's mother born UK	20,202	0.001	-0.003	-0.001	0.773	
	(NA)	(0.002)	(0.006)	(0.006)	(NA)	
Mother's father born UK	20,202	0.005***	0.000	-0.009	0.762	
	(NA)	(0.002)	(0.007)	(0.007)	(NA)	
Has siblings	20,202	-0.000	-0.006	0.004	0.900	
	(NA)	(0.003)	(0.008)	(0.009)	(NA)	
White british father	20,202	-0.000	-0.008	0.010	0.674	
	(NA)	(0.003)	(0.009)	(0.010)	(NA)	
White british mother	20,202	-0.003	-0.005	0.015	0.680	
	(NA)	(0.003)	(0.010)	(0.010)	(NA)	

Characteristics at birth in the BCS70

		Regressors				
Dependent variable	Parent unemp	IQ	Parent unemp \times IQ	Obs.	Mean outcome	
Parity	0.444***	-0.069***	0.024	5,063	1.50	
	(0.094)	(0.022)	(0.085)			
Lactation attempted	-0.049**	0.031***	-0.026	5,063	0.32	
	(0.024)	(800.0)	(0.024)			
Birthweight, g	-60.310*	57.119***	-10.030	5,059	3,284	
	(35.011)	(9.956)	(30.745)			
Age of mother	0.575*	0.378***	0.380	5,063	26.18	
	(0.325)	(0.082)	(0.307)			
Age of father	1.807***	0.440***	0.760	4,405	29.02	
	(0.424)	(0.102)	(0.375)			
Height of mother, cm	-1.131***	0.346***	-0.033	5,029	161	
	(0.369)	(0.109)	(0.326)			
Age of mother at first birth	-0.621***	0.485***	0.013	5,043	21.69	
	(0.217)	(0.061)	(0.204)			

Parallel trends and intergenerational persistence of intelligence

0.0 0.1

Intergenerational process on IQ

$$IQ_{\rm child} = \rho(IQ_{\rm par})IQ_{\rm par} + \nu$$

$$\rho(IQ_{\rm par}) = \rho_0 + \rho_1IQ_{\rm par}$$

Parallel trends condition

$$\begin{split} \frac{\mathsf{Cov}(IQ_P,IQ_C|UP=1)}{\mathsf{Var}(IQ_C|UP=1)} - \\ - \frac{\mathsf{Cov}(IQ_P,IQ_C|UP=0)}{\mathsf{Var}(IQ_C|UP=0)} = 0 \end{split}$$

Cognitive test results at age 5 in the BCS70

		Regressors			
Dependent variable	Parent unemp	IQ	Parent unemp \times IQ	Obs.	Mean outcome
Composite score (PC1)	-0.123 (0.088)	0.267*** (0.037)	0.020 (0.072)	2,134	-0.05
Reading score	-0.523 (0.353)	1.448*** (0.17)	-0.898 (0.359)	2,215	3.10
English picture vocab. score	-0.349*** (0.091)	0.375*** (0.025)	0.012 (0.084)	4,587	-0.34
Copying designs score	-0.052 (0.062)	0.393*** (0.017)	0.089	4,587	-0.10
Draw-a-man score	-0.109 (0.077)	0.288***	0.055	4,587	-0.17
Complete-a-profile score	-0.330 (0.258)	0.480*** (0.072)	0.016 (0.251)	4,431	6.85

Cognitive test results at age 16 in the BCS70

		Regressors			
Dependent variable	Parent unemp	IQ	Parent unemp \times IQ	Obs.	Mean outcome
Composite score (PC1)	-0.178* (0.1)	0.579*** (0.026)	0.129 (0.103)	1,297	-0.07
Reading score	-2.791** (1.368)	7.387*** (0.351)	2.646 (1.459)	1,377	53.58
Spelling score	-2.178 (4.753)	14.864*** (1.365)	2.697 (4.205)	5,063	74.11
Vocabulary score	-0.872 (1.284)	6.146*** (0.381)	-0.584 (1.162)	5,063	19.64
Math score	-0.185 (1.099)	6.102*** (0.287)	0.946 (1.175)	1,643	36.14
Complete-matrix score	-0.285* (0.172)	0.575*** (0.048)	0.034 (0.212)	1,412	8.81

Intelligence as outcome

Parallel trend assumption

$$\frac{{\rm Cov}(Y^0, IQ^1|UP=1)}{{\rm Var}(IQ^1|UP=1)} - \frac{{\rm Cov}(Y^0, IQ^0|UP=0)}{{\rm Var}(IQ^0|UP=0)} = 0$$

Regression interpretation

$$\beta_3 = \frac{\partial}{\partial IQ^1} \mathbb{E}(Y^1 - Y^0 | UP = 1, IQ^1)$$

Limitation: Y^1-Y^0 may interact differently with IQ^0

Effect on education by parental qualifications

	Age left school	Post-16 school	Degree	Uni degree
Parent unemp \times IQ	0.067	0.064	0.020	-0.002
	(0.068)	(0.039)	(0.045)	(0.049)
No school $ imes$ Parent unemp $ imes$ IQ	-0.401^{\dagger}	-0.150	$-0.257^{\dagger\dagger}$	-0.148
	(0.191)	(0.097)	(0.098)	(0.093)
Some school $ imes$ Parent unemp $ imes$ IQ	-0.157^{\dagger}	-0.104^{\dagger}	-0.046	-0.024
	(0.072)	(0.042)	(0.046)	(0.050)
Qual missing \times Parent unemp \times IQ	$-0.212^{\dagger\dagger}$	$-0.134^{\dagger\dagger}$	-0.098^{\dagger}	-0.056
	(0.079)	(0.045)	(0.049)	(0.051)
Obs.	20,202	20,202	20,202	20,202

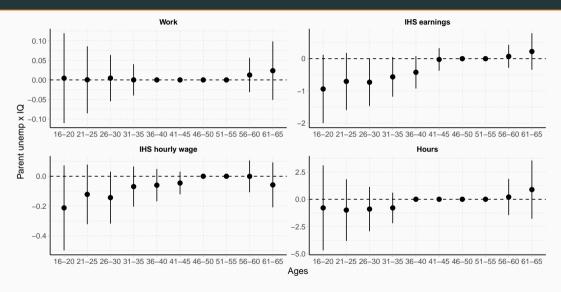
 $^{^{\}dagger}q{<}0.1;\,^{\dagger\dagger}q{<}0.05;\,^{\dagger\dagger\dagger}q{<}0.01$ based on FDR q-values

 $^{^*}p{<}0.1;$ $^{**}p{<}0.05;$ $^{***}p{<}0.01$ based on conventional p-values

Heckman two-step: labour-market results

		Dependent variables					
	IHS earnings	IHS hourly wage	Hours	Current job rank			
Parent unemp	-0.264	-0.037	-1.371	-0.091			
	(0.061)	(0.009)	(0.434)	(0.016)			
IQ	0.283	0.046	0.417	0.132			
	(0.034)	(0.005)	(0.255)	(0.008)			
Parent unemp \times IQ	0.112	0.009	0.607	0.027			
	(0.057)	(0.008)	(0.405)	(0.016)			
Obs.	20,202	20,202	20,202	20,202			
	(NA)	(NA)	(NA)	(NA)			

Job rankings


	Dependent variables		
_	First job rank	Current job rank	
Parent unemp	-0.041***	-1.049***	
	(0.012)	(0.204)	
IQ	0.030***	0.888***	
	(0.003)	(0.060)	
Parent unemp \times IQ	0.004	0.881†††	
, ,	(0.011)	(0.196)	
Obs.	16374.000	20201.000	

 $^{^{\}dagger}q{<}0.1;~^{\dagger\dagger}q{<}0.05;~^{\dagger\dagger\dagger}q{<}0.01$ based on FDR q-values

 $^{^*}p{<}0.1;$ $^{**}p{<}0.05;$ $^{***}p{<}0.01$ based on conventional p-values

Age profiles

Child's gender

	Dependent variables					
	Degree	Work	IHS earnings	IHS hourly wage	First job rank	Current job rank
Parent unemp	-0.035*	-0.049***	-0.274***	-0.022***	-0.036*	-0.830***
	(0.018)	(0.018)	(0.066)	(0.005)	(0.019)	(0.299)
IQ	0.132***	0.053***	0.300***	0.029***	0.014***	0.813***
	(0.005)	(0.005)	(0.020)	(0.002)	(0.005)	(0.083)
Parent unemp \times Female	-0.009	-0.027	-0.011	0.009	-0.009	-0.398
	(0.023)	(0.025)	(0.089)	(0.007)	(0.025)	(0.419)
$IQ \times Female$	-0.001	-0.001	-0.009	-0.008***	0.031***	0.148
	(0.006)	(0.007)	(0.025)	(0.003)	(0.006)	(0.110)
Parent unemp \times IQ	-0.035	0.026	0.080	$\textbf{-0.014}^{\dagger\dagger}$	0.001	0.528
	(0.016)	(0.019)	(0.066)	(0.005)	(0.017)	(0.310)
Parent unemp \times Female \times IQ	-0.003	0.037	0.083	0.008	0.003	0.628
	(0.020)	(0.024)	(0.084)	(0.007)	(0.022)	(0.403)

 $^{^\}dagger q{<}0.1;$ $^{\dagger\dagger}q{<}0.05;$ $^{\dagger\dagger\dagger}q{<}0.01$ based on FDR q-values

p<0.1; p<0.05; p<0.05; p<0.01 based on conventional p-values

Parent's gender

		Dependent variables						
	Degree	Work	IHS earnings	IHS hourly wage	First job rank	Current job rank		
IQ	0.134***	0.047***	0.280***	0.025***	0.034***	0.780***		
	(0.004)	(0.004)	(0.016)	(0.002)	(0.004)	(0.071)		
Father unemp	-0.037**	-0.059***	-0.247***	-0.018***	-0.029**	-0.930***		
	(0.015)	(0.015)	(0.054)	(0.003)	(0.014)	(0.247)		
Father unemp \times IQ	-0.032 [†]	0.037	0.090	-0.014†††	0.000	0.856†††		
	(0.013)	(0.015)	(0.051)	(0.004)	(0.013)	(0.243)		
Mother unemp	0.010	-0.035***	-0.172***	-0.003	-0.021***	-0.597***		
	(0.007)	(0.007)	(0.027)	(0.003)	(0.007)	(0.116)		
Mother unemp \times IQ	-0.002	0.016	0.027	0.000	-0.010	0.221		
	(0.007)	(0.008)	(0.027)	(0.003)	(0.007)	(0.119)		

 $^{^\}dagger q{<}0.1;\,^{\dagger\dagger}q{<}0.05;\,^{\dagger\dagger\dagger}q{<}0.01$ based on FDR q-values

 $^{^*}p{<}0.1;$ $^{**}p{<}0.05;$ $^{***}p{<}0.01$ based on conventional p-values

Robustness checks: UKHLS

Parent unemp \times IQ

				Born in					
	Baseline	Born < 1981	White British	England	Scotland	Wales	NI		
Post-16 school	-0.041 ^{†††}	-0.030††	-0.040 ^{†††}	-0.040 ^{†††}	-0.014	-0.046	-0.043		
	(0.011)	(0.014)	(0.012)	(0.013)	(0.039)	(0.031)	(0.033)		
Degree	-0.036 ^{†††}	-0.017	-0.038 ^{†††}	-0.035 ^{†††}	0.001	-0.059^{\dagger}	-0.005		
	(0.010)	(0.013)	(0.011)	(0.012)	(0.028)	(0.024)	(0.028)		
Work	0.047 ^{†††}	$0.049^{\dagger\dagger\dagger}$	$0.052^{\dagger \dagger \dagger}$	0.054 ^{†††}	0.044	0.033	-0.094 ^{†††}		
	(0.012)	(0.014)	(0.013)	(0.014)	(0.037)	(0.041)	(0.027)		
$\%\Delta$ earnings	$9.717^{\dagger\dagger\dagger}$	13.915 ^{††}	$14.791^{\dagger\dagger\dagger}$	$15.144^{\dagger\dagger}$	10.192	18.500	$-27.116^{\dagger\dagger}$		
	(3.079)	(4.932)	(4.412)	(4.589)	(12.480)	(12.799)	(9.577)		
$\%\Delta$ hourly wage	-4.492	-4.116 ^{†††}	-5.299†††	-4.708†††	-19.523 ^{†††}	-14.162 ^{†††}	10.996†††		
	(2.444)	(1.312)	(1.132)	(1.288)	(2.145)	(1.706)	(1.482)		
Hours	1.560 ^{†††}	1.379 ^{††}	$1.719^{\dagger\dagger\dagger}$	1.649 ^{†††}	2.076	2.720 [†]	-3.444 ^{†††}		
	(0.439)	(0.533)	(0.476)	(0.500)	(1.306)	(1.178)	(1.011)		

Robustness checks: **BCS70**

Depedent variable	born in 1970		BCS70							
			age 26		age 30		age 34		age 38	
	UP × IQ	N	UP × IQ	N	UP × IQ	N	UP × IQ	N	UP × IQ	N
Degree	-0.004	578	-0.072†††	4,901	-0.060 ^{†††}	5,056	-0.039 [†]	5,063	-0.005	3,555
	(0.013)	578	(0.011)	4,901	(0.016)	5,056	(0.018)	5,063	(0.026)	3,55!
Work	0.106†††	578	0.028	5,063	0.082 ^{††}	4,170	0.087 ^{††}	3,757	0.023	3,542
	(0.016)	578	(0.027)	5,063	(0.027)	4,170	(0.028)	3,757	(0.028)	3,542
$\%\Delta$	19.585	578	7.786	4,780	33.963 [†]	1,886	34.546	1,375	-6.423	3,14
earnings										
	(10.482)	578	(8.635)	4,780	(15.560)	1,886	(19.707)	1,375	(15.396)	3,148
Current job	1.557†††	578	0.012	1,920	0.084	2,429	-0.009	2,103	0.040	5,04
	(0.333)	578	(0.055)	1,920	(0.064)	2,429	(0.052)	2,103	(0.038)	5,04
First job	-0.039	481	0.119	221	0.257	162	0.311†	116	0.130	483
	(0.033)	481	(0.084)	221	(0.167)	162	(0.144)	116	(0.059)	483