Selection and the Roy Model in the Neolithic Transition

Nurfatima Jandarova¹ Aldo Rustichini¹

May 11, 2023

¹University of Minnesota, Department of Economics

European Social Science Genetics Network Conference II

Introduction

Technological and climate shift

- direct effect: incentives and decisions
- indirect effect: population distribution

This paper

- Climate shift and adoption of agriculture over the past 14,000 years
- Link selection to economic activity choice (farming vs foraging)
- Evolution in population distribution
- Impact: current choices depend on actions of past generations

Contributions

Polygenic selection: Berg and Coop (2014); Racimo, Berg, and Pickrell (2018); Guo, Yang, and Visscher (2018); Cox et al. (2019); S. Mathieson and Mathieson (2018); Uricchio (2020); I. Mathieson (2021); Song et al. (2021); Stern et al. (2021); Yair and Coop (2022)

Link to economic model of activity choice

Economics of farming spread: Bowles (2011); Bowles and Choi (2013); Robson (2010); Rowthorn (2011); Rowthorn and Seabright (2010)

Emphasise the role of genotype distribution

Climate and agriculture

Holocene (\approx 11,000 years ago - present)

- warmer temperatures
- increased precipitation ▶ Figure
- more stable climate (Feynman and Ruzmaikin 2007)

Agriculture

- begins to spread $\approx 11{,}000$ years ago lacktriangle Figure
- higher marginal productivity thanks to climate change
- evolutionary advantages: higher fertility, lower mortality (Shennan 2018)

Selection of farming-friendly genotypes

Model of genotype evolution

Based on Wright-Fisher model

- finite, constant population N
- K causal loci
- ullet unit of analysis haplotype pairs $\mathbf{H}=(l,r)=\left(\{0,1\}^K,\{0,1\}^K
 ight)$
- mutation, recombination, selection

▶ Process on haplotype pair

Selection and technology

• z(g) is a polygenic score

$$z(g) = \sum_{k=1}^{K} \beta(k)g(k)$$

- two technologies: HG foraging and AG farming
- technology-specific fitness function

$$f(z,\tau) = R_{\tau} \exp(\omega_{\tau} z), \forall \tau \in \{HG, AG\}$$

• fitness-maximising technology choice: $\hat{f}(z) \equiv \max_{\tau} f(z, \tau)$

Technology choice

Roy model

Technology choice

Adapted to fitness

Climate shift and fitness

Data

Genotypes

- Ancient DNA (David Reich Lab 2021)
 - 2,328 unrelated ancient individuals from Western Eurasia
 - Allele frequencies in Western hunter-gatherer (WHG) population ADMIXTURE
- 1000 Genome Project
 - 503 individuals from EUR populations

GWAS estimates

Educational attainment (Lee et al. 2018)

Descriptive evidence

Estimation

Parameter of interest: technology-specific selection gradient $\omega_{ au}$

- Assume distribution before climate shift is at steady state: $\omega_{HG}=0$
- Estimate ω_{AG} by maximising simulated likelihood
 - Draw initial haplotype matrix consistent with allele frequencies in WHG
 - $\, \bullet \,$ Simulate independent histories from the model over T generations
 - Compute simulated likelihood of phenotypes in modern EUR

Results

Results

Full sample

Results

Full sample

Truncated sample

Conclusion

- Study genetic evolution in European populations over the last 14,000 years
- Extend Wright-Fisher model with activity choice in the spirit of Roy model
- Estimate using ancient and modern genotypes

Current choices depend on actions of past generations

Future extensions:

- Migration
- Estimation with path

Appendix

Climate (temperature)

∢ Back

Climate (precipitation)

Red Sea level

Source: Grant et al. (2012)

Spread of farming

Reprinted Fig 1.1 from Shennan (2018). Dates are shown in years before present.

Process on haplotype pairs

- 1. (Initial condition) Haplotype pairs h(t) at time t
- 2. (Mutation) Random mutation, independent across alleles, loci and individuals.
- 3. (Cross-over recombination) Non-homogeneous Poisson distribution
- 4. (Random mating)
- 5. (**Reproduction**) One haplotype from each parent, independently across children and chromosomes
- 6. (Selection) Relative fitness of every child reaching the reproductive age
- 7. (Next generation) Random draw from multinomial distribution over the haplotypes of size N and probabilities adjusted by the relative fitness

Climate shift and fitness

◆ Back

Supervised ADMIXTURE

